37 #include "constitutive.h" 40 #include "meshes/tetgen_mesh.h" 43 using namespace oomph;
50 template<
class ELEMENT>
52 public virtual SolidMesh
59 const std::string& element_file_name,
60 const std::string& face_file_name,
61 TimeStepper* time_stepper_pt=
62 &Mesh::Default_TimeStepper) :
63 TetgenMesh<ELEMENT>(node_file_name, element_file_name,
64 face_file_name, time_stepper_pt)
67 set_lagrangian_nodal_coordinates();
70 setup_boundary_element_info();
102 const Vector<double> &xi,
119 const Vector<double> &n, Vector<double> &traction)
121 unsigned dim = traction.size();
122 for(
unsigned i=0;i<dim;i++)
124 traction[i] = -P*n[i];
139 template<
class ELEMENT>
152 void doc_solution(DocInfo& doc_info);
157 void create_traction_elements();
178 template<
class ELEMENT>
183 string node_file_name=
"fsi_bifurcation_solid.1.node";
184 string element_file_name=
"fsi_bifurcation_solid.1.ele";
185 string face_file_name=
"fsi_bifurcation_solid.1.face";
194 Pinned_solid_boundary_id.resize(3);
195 Pinned_solid_boundary_id[0]=0;
196 Pinned_solid_boundary_id[1]=1;
197 Pinned_solid_boundary_id[2]=2;
200 Solid_traction_boundary_id.resize(12);
201 for (
unsigned i=0;i<12;i++)
203 Solid_traction_boundary_id[i]=i+3;
211 std::ofstream bc_file(
"RESLT/pinned_solid_nodes.dat");
214 unsigned n=Pinned_solid_boundary_id.size();
215 for (
unsigned i=0;i<n;i++)
218 unsigned b=Pinned_solid_boundary_id[i];
219 unsigned num_nod= Solid_mesh_pt->nboundary_node(b);
220 for (
unsigned inod=0;inod<num_nod;inod++)
223 SolidNode* nod_pt=Solid_mesh_pt->boundary_node_pt(b,inod);
226 for (
unsigned i=0;i<3;i++)
228 nod_pt->pin_position(i);
231 bc_file << nod_pt->x(i) <<
" ";
234 bc_file << std::endl;
243 unsigned n_element = Solid_mesh_pt->nelement();
244 for(
unsigned i=0;i<n_element;i++)
247 ELEMENT *el_pt =
dynamic_cast<ELEMENT*
>(
248 Solid_mesh_pt->element_pt(i));
251 el_pt->constitutive_law_pt() =
263 n=Solid_traction_boundary_id.size();
264 Solid_traction_mesh_pt.resize(n);
265 for (
unsigned i=0;i<n;i++)
267 Solid_traction_mesh_pt[i]=
new SolidMesh;
271 create_traction_elements();
278 add_sub_mesh(Solid_mesh_pt);
281 n=Solid_traction_boundary_id.size();
282 for (
unsigned i=0;i<n;i++)
284 add_sub_mesh(Solid_traction_mesh_pt[i]);
291 std::cout <<
"Number of equations: " << assign_eqn_numbers() << std::endl;
300 template<
class ELEMENT>
305 unsigned n=Solid_traction_boundary_id.size();
306 for (
unsigned i=0;i<n;i++)
309 unsigned b=Solid_traction_boundary_id[i];
312 unsigned n_element = Solid_mesh_pt->nboundary_element(b);
315 for(
unsigned e=0;e<n_element;e++)
318 ELEMENT* bulk_elem_pt =
dynamic_cast<ELEMENT*
>(
319 Solid_mesh_pt->boundary_element_pt(b,e));
322 int face_index = Solid_mesh_pt->face_index_at_boundary(b,e);
325 SolidTractionElement<ELEMENT>* el_pt=
326 new SolidTractionElement<ELEMENT>(bulk_elem_pt,face_index);
329 Solid_traction_mesh_pt[i]->add_element_pt(el_pt);
343 template<
class ELEMENT>
356 sprintf(filename,
"%s/solid_soln%i.dat",doc_info.directory().c_str(),
358 some_file.open(filename);
359 Solid_mesh_pt->output(some_file,npts);
365 sprintf(filename,
"%s/traction%i.dat",doc_info.directory().c_str(),
367 some_file.open(filename);
368 unsigned n=Solid_traction_boundary_id.size();
369 for (
unsigned i=0;i<n;i++)
371 Solid_traction_mesh_pt[i]->output(some_file,npts);
384 int main(
int argc,
char **argv)
387 CommandLineArgs::setup(argc,argv);
393 doc_info.set_directory(
"RESLT");
404 double g_increment=1.0e-3;
405 double p_increment=1.0e-2;
408 if (CommandLineArgs::Argc!=1)
410 std::cout <<
"Validation -- only doing two steps" << std::endl;
415 for (
unsigned istep=0;istep<nstep;istep++)
418 problem.newton_solve();
void constant_pressure(const Vector< double > &xi, const Vector< double > &x, const Vector< double > &n, Vector< double > &traction)
Constant pressure load. The arguments to this function are imposed on us by the SolidTractionElements...
void doc_solution(DocInfo &doc_info)
Doc the solution.
Unstructured solid problem.
Vector< unsigned > Solid_traction_boundary_id
IDs of solid mesh boundaries which make up the traction interface.
MySolidTetgenMesh(const std::string &node_file_name, const std::string &element_file_name, const std::string &face_file_name, TimeStepper *time_stepper_pt=&Mesh::Default_TimeStepper)
Constructor:
void create_traction_elements()
Create traction elements.
virtual ~MySolidTetgenMesh()
Empty Destructor.
MySolidTetgenMesh< ELEMENT > * Solid_mesh_pt
Bulk solid mesh.
UnstructuredSolidProblem()
Constructor:
double Gravity
Non-dim gravity.
Vector< SolidMesh * > Solid_traction_mesh_pt
Meshes of traction elements.
double Nu
Poisson's ratio.
Vector< unsigned > Pinned_solid_boundary_id
IDs of solid mesh boundaries where displacements are pinned.
void gravity(const double &time, const Vector< double > &xi, Vector< double > &b)
Non-dimensional gravity as body force.
Tetgen-based mesh upgraded to become a solid mesh.
int main(int argc, char **argv)
Demonstrate how to solve an unstructured 3D solid problem.
double P
Uniform pressure.
ConstitutiveLaw * Constitutive_law_pt
Create constitutive law.
~UnstructuredSolidProblem()
Destructor (empty)