Classes | Namespaces
pseudo_buckling_ring.h File Reference

Go to the source code of this file.

Classes

class  oomph::PseudoBucklingRing
 Pseudo buckling ring: Circular ring deformed by the N-th buckling mode of a thin-wall elastic ring.

\[ x = R_0 \cos(\zeta) + \epsilon \left( \cos(N \zeta) \cos(\zeta) - A \sin(N \zeta) \sin(\zeta) \right) sin(2 \pi t/T) \]

\[ y = R_0 \sin(\zeta) + \epsilon \left( \cos(N \zeta) \sin(\zeta) + A \sin(N \zeta) \cos(\zeta) \right) sin(2 \pi t/T) \]

where A is the ratio of the aziumuthal to the radial buckling amplitude (A=-1/N for statically buckling rings) and epsilon is the buckling amplitude. More...

 
class  oomph::PseudoBucklingRingElement
 Pseudo buckling ring: Circular ring deformed by the N-th buckling mode of a thin-wall elastic ring.

\[ x = R_0 \cos(\zeta) + \epsilon \left( \cos(N \zeta) \cos(\zeta) - A \sin(N \zeta) \sin(\zeta) \right) sin(2 \pi t/T) \]

\[ y = R_0 \sin(\zeta) + \epsilon \left( \cos(N \zeta) \sin(\zeta) + A \sin(N \zeta) \cos(\zeta) \right) sin(2 \pi t/T) \]

where A is the ratio of the aziumuthal to the radial buckling amplitude (A=-1/N for statically buckling rings) and epsilon is the buckling amplitude. Scale R_0 is adjusted to ensure conservation of (computational) volume/area. This is implemented by a pseudo-elasticity approach: The governing equation for $ R_0 $ is:

\[ p_{ref} = R_0 - 1.0 \]

The pointer to the reference pressure needs to be set with reference_pressure_pt(). More...

 

Namespaces

 oomph