
Chapter 1

Demo problem: Deformation of a solid by a
prescribed boundary motion

The purpose of this tutorial is to demonstrate how to impose the deformation of domain boundaries using Lagrange
multipliers. This functionality is required, e.g. when using (pseudo-)solid mechanics to update the shape of the fluid
mesh in fluid-structure interaction problems, say. (See Comments and Exercises for a discussion of an alternative,
somewhat easier method for imposing boundary displacements in single-physics solid mechanics problems).

1.1 The model problem

Here is a sketch of the model problem. A unit square is parametrised by two Lagrangian coordinates (ξ1, ξ2).
Three of the four boundaries are held in a fixed position while the square's upper boundary ∂Dprescr (which is
parametrised by the boundary coordinate ζ) is displaced to a new position given by Rprescr(ζ):

Figure 1.1 Sketch of the problem.

1.2 Theory and implementation

We identify the upper boundary by writing the Lagrangian coordinates of points on ∂Dprescr as(
ξ1, ξ2

)∣∣
∂Dprescr

=
(
ξ1∂Dprescr

(ζ), ξ2∂Dprescr
(ζ)
)

2 Demo problem: Deformation of a solid by a prescribed boundary motion

which allows us to write the displacement constraint as

R(ξ1∂Dprescr
(ζ), ξ2∂Dprescr

(ζ)) = Rprescr(ζ).

We enforce this constraint by augmenting the principle of virtual displacements, discussed in the solid
mechanics theory tutorial, by a Lagrange multiplier term so that it becomes∫ {

σij δγij −
(

f − Λ2 ∂
2R

∂t2

)
· δR

}
dv −

∮
Atract

T · δR dA + δΠconstraint = 0 (1)

where

Πconstraint =

∫
∂D

(
R(ξ1(ζ), ξ2(ζ)) − Rprescr(ζ)

)
· Λ dS.

Here

dS =

∣∣∣∣dR(ξ1(ζ), ξ2(ζ))

dζ

∣∣∣∣ dζ
is the differential of the arclength along the domain boundary and the vector Λ (not to be confused with the scalar
Λ2 which represents the non-dimensional density in (1)!) is the Lagrange multiplier – the surface traction to be
applied to ∂Dprescr to deform the boundary into the required shape.

We discretise this constraint by attaching FaceElements to the boundaries of the "bulk" solid elements that
are adjacent to ∂Dprescr. We denote the number of nodes in these FaceElements by N and write the i-th
component of the discrete Lagrange multiplier stored at node j as Lij . Thus the i -th component of the Lagrange
multiplier at local coordinate s in the element is given by

Λi =

N∑
j=1

Lijψj(s)

where ψj(s) is the shape function associated with node j.

Upon taking the variations of the discretised constraint with respect to the unknown nodal positions and the discrete
Lagrange multipliers we obtain (i) additional contributions to the residuals of the "bulk" solid mechanics equations
(these may be interpreted as the virtual work done by the boundary tractions required to impose the prescribed
boundary displacement) and (ii) the equations that impose the displacement constraints in weak form.

The actual implementation of this approach in oomph-lib is best thought of as a generalisation of the Solid←↩

TractionElements that are used to impose a prescribed traction to the boundary of a solid domain. The main
difference is that in the ImposeDisplacementByLagrangeMultiplierElement, the imposed traction is
one of the unknowns in the problem and must be determined via the displacement constraint, using the approach
described above. The element introduces additional unknowns (the nodal values of the Lagrange multiplier) into
the problem, therefore the ImposeDisplacementByLagrangeMultiplierElement resizes (increases)
the number of values stored at the node from the value that was originally assigned by the "bulk" solid element it is
attached to. (If the elements are used in a single-physics solid mechanics problem the discrete Lagrange multipliers
are the only nodal values in the problem since the unknown nodal positions are stored in a separate Data item;
cf. "Solid mechanics: Theory and implementation" for more details). The prescribed boundary
shape Rprescr(ζ) is provided by a GeomObject.

1.3 Results

The animation below shows the domain deformation in response to a prescribed boundary displacement given by

Rprescr(ζ) =

(
ζ
1

)
+A

(
5ζ (ζ − 1) (ζ − 0.7)
1
2 (1 − cos (2πζ))

)
Generated by Doxygen

../../solid_theory/html/index.html#equilibrium
../../solid_theory/html/index.html#equilibrium
../../solid_theory/html/index.html#solid_node

1.4 Describing the prescribed boundary motion with a GeomObject 3

With this choice the upper boundary remains flat (i.e. at x2 = 1) when A = 0. As A increases, the boundary is
pulled upwards into a sinusoidal shape while simultaneously being pushed to the right. The vectors in the animation
represent the Lagrange multipliers (i.e. the physical surface tractions) required to deform the domain into the
required shape. Note how the automatic mesh adaptation refines the mesh in regions where the solid is strongly
deformed.

Figure 1.2 Domain deformation in response to the prescribed boundary displacement.

1.4 Describing the prescribed boundary motion with a GeomObject

Here is the implementation of the prescribed boundary shape as the WarpedLine, a two-dimensional Geom←↩

Object whose shape is parametrised by a single intrinsic coordinate.

//======Start_of_warped_line===
/// Warped line in 2D space
//===
class WarpedLine : public GeomObject
{

public:

Generated by Doxygen

4 Demo problem: Deformation of a solid by a prescribed boundary motion

/// Constructor: Specify amplitude of deflection from straight horizontal line
WarpedLine(const double& ampl) : GeomObject(1,2)
{
Ampl=ampl;
}

/// Broken copy constructor
WarpedLine(const WarpedLine& dummy)
{
BrokenCopy::broken_copy("WarpedLine");
}

/// Broken assignment operator
void operator=(const WarpedLine&)
{
BrokenCopy::broken_assign("WarpedLine");
}

/// Empty Destructor
~WarpedLine(){}

/// \short Position vector at Lagrangian coordinate zeta
void position(const Vector<double>& zeta, Vector<double>& r) const
{
// Position vector
r[0] = zeta[0]+5.0*Ampl*zeta[0]*(zeta[0]-1.0)*(zeta[0]-0.7);
r[1] = 1.0+Ampl*0.5*(1.0-cos(2.0*MathematicalConstants::Pi*zeta[0]));
}

/// \short Parametrised position on object: r(zeta). Evaluated at
/// previous timestep. t=0: current time; t>0: previous
/// timestep. Forward to steady version
void position(const unsigned& t, const Vector<double>& zeta,

Vector<double>& r) const
{
position(zeta,r);
}

/// Access to amplitude
double& ampl() {return Ampl;}

/// \short How many items of Data does the shape of the object depend on?
/// None.
unsigned ngeom_data() const
{
return 0;
}

private:

/// Amplitude of perturbation
double Ampl;

};

1.5 Global parameters

As usual we define the problem parameters in a global namespace. We provide an instantiation of the Geom←↩

Object that defines the deformed boundary shape (setting its initial displacement amplitude to zero), and create
an instance of oomph-lib's generalised Hookean constitutive equation with a Poisson ratio of 0.3 (recall that the
use of the single-argument constructor for this constitutive equation implies that all stresses are non-dimensionalised
on Young's modulus E; see the solid mechanics theory tutorial for details).

//=======start_namespace==
/// Global parameters
//==
namespace Global_Physical_Variables
{

/// GeomObject specifying the shape of the boundary: Initially it’s flat.
WarpedLine Boundary_geom_object(0.0);

/// Poisson’s ratio
double Nu=0.3;

Generated by Doxygen

../../solid_theory/html/index.html#non-dim_solid

1.6 The driver code 5

// Generalised Hookean constitutive equations
GeneralisedHookean Constitutive_law(&Global_Physical_Variables::Nu);

} //end namespace

1.6 The driver code

We build an instantiation of the Problem class (described below), using nine-noded, two-dimensional
RefineableQPVDElements to discretise the domain, and document the initial domain shape.

//=======start_of_main==
/// Driver code
//==
int main()
{

//Set up the problem
PrescribedBoundaryDisplacementProblem<RefineableQPVDElement<2,3>

> problem;

// Doc initial domain shape
problem.doc_solution();

We perform a parameter study, increasing the amplitude of the prescribed boundary deflection in small increments,
while allowing one mesh adaptation per solution.

// Max. number of adaptations per solve
unsigned max_adapt=1;

//Parameter incrementation
unsigned nstep=2;
for(unsigned i=0;i<nstep;i++)
{
// Increment imposed boundary displacement
Global_Physical_Variables::Boundary_geom_object.

ampl()+=0.1;

// Solve the problem with Newton’s method, allowing
// up to max_adapt mesh adaptations after every solve.
problem.newton_solve(max_adapt);

// Doc solution
problem.doc_solution();

Since the main use of the methodology demonstrated here is in free-boundary problems where the solution of the
solid problem merely serves to update the nodal positions in response to the prescribed boundary motion, we re-set
the nodes' Lagrangian coordinates to their Eulerian positions after every solve. This makes the deformed config-
uration stress-free and tends to stabilise the computation, allowing larger domain deformations to be computed.
We stress, however, that this renders the computed solutions physically meaningless in the sense that the domain
shapes no longer represent the solution of the original elasticity problem for which the stress-free, undeformed
configuration remains unchanged throughout the body's deformation.

// For maximum stability: Reset the current nodal positions to be
// the "stress-free" ones -- this assignment means that the
// parameter study no longer corresponds to a physical experiment
// but is what we’d do if we wanted to use the solid solve
// to update a fluid mesh in an FSI problem, say.
problem.solid_mesh_pt()->set_lagrangian_nodal_coordinates();

}

} //end of main

Generated by Doxygen

6 Demo problem: Deformation of a solid by a prescribed boundary motion

1.7 The Problem class

The definition of the Problem class follows the usual pattern. We provide an access functions to the bulk mesh,
as well as a few private helper functions that attach and detach the ImposeDisplacementByLagrange←↩

MultiplierElements from the bulk mesh before and after the mesh adaptation.

//=============begin_problem==
/// Problem class for deformation of elastic block by prescribed
/// boundary motion.
//==
template<class ELEMENT>
class PrescribedBoundaryDisplacementProblem : public Problem
{

public:

/// Constructor:
PrescribedBoundaryDisplacementProblem();

/// Update function (empty)
void actions_after_newton_solve() {}

/// \short Update function (empty)
void actions_before_newton_solve() {}

/// Access function for the solid mesh
ElasticRefineableRectangularQuadMesh<ELEMENT>*& solid_mesh_pt()
{return Solid_mesh_pt;}

/// Actions before adapt: Wipe the mesh of Lagrange multiplier elements
void actions_before_adapt();

/// Actions after adapt: Rebuild the mesh of Lagrange multiplier elements
void actions_after_adapt();

/// Doc the solution
void doc_solution();

private:

/// \short Create elements that enforce prescribed boundary motion
/// by Lagrange multiplilers
void create_lagrange_multiplier_elements();

/// Delete elements that enforce prescribed boundary motion
/// by Lagrange multiplilers
void delete_lagrange_multiplier_elements();

/// Pointer to solid mesh
ElasticRefineableRectangularQuadMesh<ELEMENT>* Solid_mesh_pt;

/// Pointers to meshes of Lagrange multiplier elements
SolidMesh* Lagrange_multiplier_mesh_pt;

/// DocInfo object for output
DocInfo Doc_info;

};

1.8 The Problem constructor

We start by creating the "bulk" mesh, discretising the domain with 5x5 elements of the type specified by the class's
template argument.

//===========start_of_constructor=======================================
/// Constructor:
//==
template<class ELEMENT>

PrescribedBoundaryDisplacementProblem<ELEMENT>::PrescribedBoundaryDisplacementProblem
()

{

Generated by Doxygen

1.8 The Problem constructor 7

// Create the mesh

// # of elements in x-direction
unsigned n_x=5;

// # of elements in y-direction
unsigned n_y=5;

// Domain length in x-direction
double l_x=1.0;

// Domain length in y-direction
double l_y=1.0;

//Now create the mesh
solid_mesh_pt() = new ElasticRefineableRectangularQuadMesh<ELEMENT>(
n_x,n_y,l_x,l_y);

Next we specify the error estimator, pass the pointer to the constitutive equation to the elements and perform one
uniform mesh refinement:

// Set error estimator
solid_mesh_pt()->spatial_error_estimator_pt()=new Z2ErrorEstimator;

//Assign the physical properties to the elements before any refinement
//Loop over the elements in the main mesh
unsigned n_element =solid_mesh_pt()->nelement();
for(unsigned i=0;i<n_element;i++)
{
//Cast to a solid element
ELEMENT *el_pt = dynamic_cast<ELEMENT*>(solid_mesh_pt()->element_pt(i));

// Set the constitutive law
el_pt->constitutive_law_pt()=&Global_Physical_Variables::Constitutive_law;
}

// Refine the mesh uniformly
solid_mesh_pt()->refine_uniformly();

We now create a new SolidMesh in which we store the elements that apply the displacement constraint. These
elements are built (and added to the newly created SolidMesh) in the helper function create_lagrange_←↩

multiplier_elements(). Both meshes are then combined to the Problem's global mesh.

// Construct the mesh of elements that enforce prescribed boundary motion
// by Lagrange multipliers
Lagrange_multiplier_mesh_pt=new SolidMesh;
create_lagrange_multiplier_elements();

// Solid mesh is first sub-mesh
add_sub_mesh(solid_mesh_pt());

// Add Lagrange multiplier sub-mesh
add_sub_mesh(Lagrange_multiplier_mesh_pt);

// Build combined "global" mesh
build_global_mesh();

We pin the position of the nodes on all domain boundaries apart from the top boundary (boundary 2) and pin
any redundant pressure degrees of freedom. (This is not strictly necessary in the present driver code since the
displacement-based RefineableQPVDElements do not have any pressure degrees of freedom. However, it is
good practice to do this anyway to guard against unpleasant surprises when the element type is changed at some
point).

// Pin nodal positions on all boundaries apart from the top one (2)
for (unsigned b=0;b<4;b++)
{
if (b!=2)

Generated by Doxygen

8 Demo problem: Deformation of a solid by a prescribed boundary motion

{
unsigned n_side = solid_mesh_pt()->nboundary_node(b);

//Loop over the nodes
for(unsigned i=0;i<n_side;i++)
{
solid_mesh_pt()->boundary_node_pt(b,i)->pin_position(0);
solid_mesh_pt()->boundary_node_pt(b,i)->pin_position(1);
}

}
}

// Pin the redundant solid pressures (if any)
PVDEquationsBase<2>::pin_redundant_nodal_solid_pressures(
solid_mesh_pt()->element_pt());

Finally, we assign the equation numbers and specify the output directory.

// Setup equation numbering scheme
cout << "Number of dofs: " << assign_eqn_numbers() << std::endl;

// Set output directory
Doc_info.set_directory("RESLT");

} //end of constructor

1.9 Actions before mesh adaptation

As usual, we remove the FaceElements that apply the displacement constraints before the bulk mesh is adapted.

//=====================start_of_actions_before_adapt======================
/// Actions before adapt: Wipe the mesh of elements that impose
/// the prescribed boundary displacements
//==
template<class ELEMENT>
void PrescribedBoundaryDisplacementProblem<ELEMENT>::actions_before_adapt

()
{
// Kill the elements and wipe surface mesh
delete_lagrange_multiplier_elements();

// Rebuild the Problem’s global mesh from its various sub-meshes
rebuild_global_mesh();

}// end of actions_before_adapt

1.10 Actions after mesh adaptation

We re-attach the FaceElements that apply the displacement constraints once the bulk mesh has been adapted.
Since the hanging status of nodes in the bulk mesh can change during the mesh adaptation it is again good practice
to pin any nodal solid pressure values that may have become redundant.

//=====================start_of_actions_after_adapt=======================
/// Actions after adapt: Rebuild the mesh of elements that impose
/// the prescribed boundary displacements
//==
template<class ELEMENT>
void PrescribedBoundaryDisplacementProblem<ELEMENT>::actions_after_adapt

()
{
// Create the elements that impose the displacement constraint
// and attach them to the bulk elements that are
// adjacent to boundary 2

Generated by Doxygen

1.11 Creating the Lagrange multiplier elements that impose the displacement constraint 9

create_lagrange_multiplier_elements();

// Rebuild the Problem’s global mesh from its various sub-meshes
rebuild_global_mesh();

// Pin the redundant solid pressures (if any)
PVDEquationsBase<2>::pin_redundant_nodal_solid_pressures(
solid_mesh_pt()->element_pt());

}// end of actions_after_adapt

1.11 Creating the Lagrange multiplier elements that impose the displacement constraint

The creation of the Lagrange multiplier elements that impose the displacement constraint follows the usual pat-
tern. We loop over the "bulk" solid elements that are adjacent to mesh boundary 2 and attach Impose←↩

DisplacementByLagrangeMultiplierElements to the appropriate faces.

//============start_of_create_lagrange_multiplier_elements===============
/// Create elements that impose the prescribed boundary displacement
//===
template<class ELEMENT>
void PrescribedBoundaryDisplacementProblem<ELEMENT>::
create_lagrange_multiplier_elements()
{
// Lagrange multiplier elements are located on boundary 2:
unsigned b=2;

// How many bulk elements are adjacent to boundary b?
unsigned n_element = solid_mesh_pt()->nboundary_element(b);

// Loop over the bulk elements adjacent to boundary b?
for(unsigned e=0;e<n_element;e++)
{
// Get pointer to the bulk element that is adjacent to boundary b
ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>(
solid_mesh_pt()->boundary_element_pt(b,e));

//Find the index of the face of element e along boundary b
int face_index = solid_mesh_pt()->face_index_at_boundary(b,e);

// Create new element and add to mesh
Lagrange_multiplier_mesh_pt->add_element_pt(
new ImposeDisplacementByLagrangeMultiplierElement<ELEMENT>(
bulk_elem_pt,face_index));

}

Next we loop over the newly-created ImposeDisplacementByLagrangeMultiplierElements and
specify the GeomObject that defines the imposed boundary displacements. We also specify which boundary
of the bulk mesh the ImposeDisplacementByLagrangeMultiplierElements are located on. This is
required to enable the ImposeDisplacementByLagrangeMultiplierElements to extract the appro-
priate boundary coordinate from its constituent nodes. (We discussed elsewhere that boundary coordinates are
usually defined (and passed to the nodes) when the nodes are first created, typically during the construction of
the bulk mesh. Since nodes can be located on multiple domain boundaries, each boundary coordinate is associ-
ated with a particular boundary number. Passing this number to the ImposeDisplacementByLagrange←↩

MultiplierElements allows them to obtain the correct boundary coordinate from the node.)

// Loop over the elements in the Lagrange multiplier element mesh
// for elements on the top boundary (boundary 2)
n_element=Lagrange_multiplier_mesh_pt->nelement();
for(unsigned i=0;i<n_element;i++)
{
//Cast to a Lagrange multiplier element
ImposeDisplacementByLagrangeMultiplierElement<ELEMENT> *el_pt =
dynamic_cast<ImposeDisplacementByLagrangeMultiplierElement<ELEMENT>*>
(Lagrange_multiplier_mesh_pt->element_pt(i));

// Set the GeomObject that defines the boundary shape and
// specify which bulk boundary we are attached to (needed to extract
// the boundary coordinate from the bulk nodes)
el_pt->set_boundary_shape_geom_object_pt(
&Global_Physical_Variables::Boundary_geom_object,b);

Generated by Doxygen

../../../poisson/fish_poisson2/html/index.html#boundary_coords

10 Demo problem: Deformation of a solid by a prescribed boundary motion

Finally, we impose boundary conditions for the Lagrange multipliers. Their values must be pinned (and set to zero)
at the left and right ends of the upper mesh boundary (boundary 2), since the displacement of the nodes at these
points is already enforced by the boundary conditions imposed at the left and right vertical boundaries (boundaries
1 and 3).

We discussed above that the discrete Lagrange multipliers are added to any already existing nodal degrees of
freedom when the ImposeDisplacementByLagrangeMultiplierElements are attached to the faces
of the "bulk" solid elements. The number of nodal values that were stored at an element's j -th node before
the additional nodal values were added, can be obtained from the function nbulk_value(j), defined in the
FaceElement base class. We pin the Lagrange multipliers at the "corner nodes" by looping over all nodes in
the ImposeDisplacementByLagrangeMultiplierElements and pinning the additional nodal values
of any nodes that are located on mesh boundaries 1 or 3.

// Loop over the nodes
unsigned nnod=el_pt->nnode();
for (unsigned j=0;j<nnod;j++)
{
Node* nod_pt = el_pt->node_pt(j);

// Is the node also on boundary 1 or 3?
if ((nod_pt->is_on_boundary(1))||(nod_pt->is_on_boundary(3)))
{
// How many nodal values were used by the "bulk" element
// that originally created this node?
unsigned n_bulk_value=el_pt->nbulk_value(j);

// The remaining ones are Lagrange multipliers and we pin them.
unsigned nval=nod_pt->nvalue();
for (unsigned j=n_bulk_value;j<nval;j++)
{
nod_pt->pin(j);
}

}
}

}

} // end of create_lagrange_multiplier_elements

1.12 Deleting the Lagrange multiplier elements that impose the displacement constraint

The function delete_lagrange_multiplier_elements() deletes the Lagrange multiplier elements that
impose the displacement constraint and flushes the associated mesh.

//====start_of_delete_lagrange_multiplier_elements=======================
/// Delete elements that impose the prescribed boundary displacement
/// and wipe the associated mesh
//===
template<class ELEMENT>
void

PrescribedBoundaryDisplacementProblem<ELEMENT>::delete_lagrange_multiplier_elements
()

{
// How many surface elements are in the surface mesh
unsigned n_element = Lagrange_multiplier_mesh_pt->nelement();

// Loop over the surface elements
for(unsigned e=0;e<n_element;e++)
{
// Kill surface element
delete Lagrange_multiplier_mesh_pt->element_pt(e);
}

// Wipe the mesh
Lagrange_multiplier_mesh_pt->flush_element_and_node_storage();

} // end of delete_lagrange_multiplier_elements

Generated by Doxygen

1.13 Post-processing 11

1.13 Post-processing

The function doc_solution() outputs the shape of the deformed body and the Lagrange multiplier along the
upper boundary.

//==============start_doc===
/// Doc the solution
//==
template<class ELEMENT>
void PrescribedBoundaryDisplacementProblem<ELEMENT>::doc_solution

()
{

ofstream some_file;
char filename[100];

// Number of plot points
unsigned n_plot = 5;

// Output shape of deformed body
//------------------------------
sprintf(filename,"%s/soln%i.dat",Doc_info.directory().c_str(),

Doc_info.number());
some_file.open(filename);
solid_mesh_pt()->output(some_file,n_plot);
some_file.close();

// Output Lagrange multipliers
//----------------------------
sprintf(filename,"%s/lagr%i.dat",Doc_info.directory().c_str(),

Doc_info.number());
some_file.open(filename);

// This makes sure the elements are ordered in same way every time
// the code is run -- necessary for validation tests.
std::vector<FiniteElement*> el_pt;
unsigned nelem=Lagrange_multiplier_mesh_pt->nelement();
for (unsigned e=0;e<nelem;e++)
{
el_pt.push_back(Lagrange_multiplier_mesh_pt->finite_element_pt(e));
}

std::sort(el_pt.begin(),el_pt.end(),FiniteElementComp());
for (unsigned e=0;e<nelem;e++)
{
el_pt[e]->output(some_file);
}

some_file.close();

// Increment label for output files
Doc_info.number()++;

} //end doc

1.14 Comments and Exercises

1.14.1 Comments

As mentioned in the introduction, there is an alternative, much simpler way of imposing prescribed boundary motions
which does not require Lagrange multipliers: Pin the nodal positions of all nodes on ∂Dprescr and update their po-
sitions manually before calling the Newton solver, e.g. by changing the actions_before_newton_solve()
function to

/// Update boundary position directly
void actions_before_newton_solve()
{

// Loop over all nodes on top boundary (boundary 2)
unsigned b=2;
unsigned n_nod = solid_mesh_pt()->nboundary_node(b);
for(unsigned i=0;i<n_nod;i++)

Generated by Doxygen

12 Demo problem: Deformation of a solid by a prescribed boundary motion

{
Node* nod_pt= solid_mesh_pt()->boundary_node_pt(b,i);

// Get boundary coordinate associated with boundary 2
Vector<double> zeta(1);
nod_pt->get_coordinates_on_boundary(b,zeta);

// Get prescribed position from GeomObject
Vector<double> r(2);
Global_Physical_Variables::Boundary_geom_object.
position(zeta,r);

// Update position
nod_pt->x(0)=r[0];
nod_pt->x(1)=r[1];

}

} // end actions_before_newton_solve

This approach is implemented in the alternative driver code prescribed_displ_lagr_mult2.cc.

1.14.2 Exercises

1. In order to familiarise yourself with the details of how FaceElements add additional nodal values to
the nodes they are attached to, output the values of n_bulk_value and nval in the loop that pins
the Lagrange multipliers in create_lagrange_multiplier_elements(). Explain why, for the
RefineableQPVDElement<2,3> used here, we have n_bulk_value = 0. What happens if you
use elements of type RefineableQPVDElementWithContinousPressure<2> instead?

2. Comment out the call to set_lagrangian_nodal_coordinates() after the solve and compare the
robustness of the computation and the resulting domain shapes. [Hint: You will have to reduce the increment
for the amplitude of the prescribed boundary deflection to 0.025 or less, otherwise the Newton iteration will
diverge very rapidly.]

3. Explore the performance of the alternative driver code (without the use of Lagrange multipliers)
prescribed_displ_lagr_mult2.cc and explain why it is less robust than the version with La-
grange multipliers (in the sense that the increment in the amplitude of the prescribed boundary displacement
has to be reduced significantly to keep the Newton method from diverging). Hint: Compare the domain
shapes before the call to the Newton solver.

4. Omit the specification of the boundary number in the bulk mesh by commenting out the call to set←↩

_boundary_number_in_bulk_mesh(...) in the function create_lagrange_multiplier_←↩

elements(). Check what happens when the code is compiled with and without the PARANOID flag.

1.15 PDF file

A pdf version of this document is available.

Generated by Doxygen

../../../../demo_drivers/solid/prescribed_displ_lagr_mult/prescribed_displ_lagr_mult2.cc
../../../../demo_drivers/solid/prescribed_displ_lagr_mult/prescribed_displ_lagr_mult2.cc

	1 Demo problem: Deformation of a solid by a prescribed boundary motion
	1.1 The model problem
	1.2 Theory and implementation
	1.3 Results
	1.4 Describing the prescribed boundary motion with a GeomObject
	1.5 Global parameters
	1.6 The driver code
	1.7 The Problem class
	1.8 The Problem constructor
	1.9 Actions before mesh adaptation
	1.10 Actions after mesh adaptation
	1.11 Creating the Lagrange multiplier elements that impose the displacement constraint
	1.12 Deleting the Lagrange multiplier elements that impose the displacement constraint
	1.13 Post-processing
	1.14 Comments and Exercises
	1.14.1 Comments
	1.14.2 Exercises

	1.15 PDF file

