
Chapter 1

Demo problem: Compressible and incompressible
behaviour

The purpose of this tutorial is to discuss the use of compressible and incompressible constitutive equations for
solid mechanics problems. As discussed in the Solid Mechanics Theory Tutorial, problems in which
the solid is truly incompressible require a solution based on the pressure/displacement formulation of the principle
of virtual displacements (PVD). Mathematically, this is because the pressure acts as the Lagrange multiplier that
enforces incompressibility. The pressure/displacement form of the PVD may be discretised with finite elements that
employ continuous (e.g. Taylor-Hood-type) or discontinuous (e.g. Crouzeix-Raviart-type) elements.

Some constitutive equations allow for compressible and incompressible behaviour, depending on their parameters.
Problems involving such constitutive equations may be solved with large number of formulations. As an example,
consider oomph-lib's generalised Hookean constitutive equation (see the disclaimer below).

I. The displacement form

oomph-lib's generalised Hookean constitutive law assumes that the 2nd Piola Kirchhoff stress σij (non-
dimensionalised on Young's modulus E) is related to Green's strain tensor γij = 1/2 (Gij − gij) via

σij =
1

2(1 + ν)

(
GikGjl +GilGjk +

2ν

1− 2ν
GijGkl

)
γkl. (1)

Here gij and Gij are the metric tensors associated with the undeformed and deformed configurations. This consti-
tutive law reduces to the the classical version of Hooke's law for small strains when Gij → gij . In the above form,
the constitutive law can be used directly in the displacement-based form of the PVD, unless ν = 1/2 – the case
that corresponds to incompressible behaviour in the small-displacement regime. (While the above formulation only
breaks down completely when ν = 1/2, numerical solutions based on the above form of the constitutive equation
become badly-behaved as ν approaches that value.)

II. The pressure-displacement form for compressible and incompressible behaviour

To avoid the problems that arise as ν → 1/2, the constitutive equation may be rewritten in the form

σij = σij − p Gij ,

where the deviatoric stress is given by

σij =
1

2(1 + ν)

(
GikGjl +GilGjk

)
γkl.

To remain consistent with (1), the pressure p must then be determined via the equation

p
1

κ
+ d = 0, (2)

../../solid_theory/html/index.html#elastic_constitutive


2 Demo problem: Compressible and incompressible behaviour

where
d = Gijγij

is the generalised dilatation (which reduces to the actual dilatation in the small-strain limit). The inverse bulk modulus
is defined as

1

κ
=

(1− 2ν)(1 + ν)

ν

and tends to zero as ν → 0. The alternative form of the constitutive equation can therefore be used for any value
of ν. If ν = 1/2, the constraint (2) enforces d = 0, i.e incompressible behaviour (at least in the small displacement
regime – for large deflections the constraint (2) simply ensures that the generalised dilatation vanishes; this may not
be a physically meaningful constraint).

III. Truly incompressible behaviour

Finally, we may retain the decomposition of the stress into its deviatoric and non-deviatoric parts but determine the
pressure from the actual incompressibility constraint, i.e. replace (2) by

detGij − det gij = 0. (3)

In this case, the deviatoric part of the stress is determined by the material's constitutive parameters, i.e. its Young's
modulus and its Poisson ratio while the pressure (acting as the Lagrange multiplier for the constraint (3)) enforces
true incompressibility.

Disclaimer

We wish to stress that not all the combinations discussed above are necessarily physically meaningful. For instance,
as already acknowledged, setting ν = 1/2 in formulation II does not ensure true incompressibility (in the sense of
(3)) if the solid undergoes large deflections. Similarly, setting ν to a value that differs from 1/2 while enforcing true
incompressibility via formulation III would be extremely odd. Furthermore, it is not clear (to us) if our generalisation
of Hooke's law (obtained by replacing the undeformed metric tensor gij by its deformed counterpart Gij yields
a constitutive equation that is particularly useful for any specific material. However, the same is true for any other
constitutive equation – not all of them are useful for all materials! The important point is that all constitutive equations
that allow for compressible and incompressible behaviour contain combinations of constitutive parameters that blow
up as incompressibility is approached. Formulation II shows how to express such constitutive laws in a way that can
be used for any value of the constitutive parameters.

With this disclaimer in mind, we will now demonstrate the use of the various combinations outlined above in a simple
test problem for which an exact (linearised) solution is available.

1.1 The problem

Here is a sketch of the problem: Three faces of a square elastic body are surrounded by "slippery" rigid walls that
allow the body to slide freely along them. The body is subject to a vertical, gravitational body force, acting in the
negative y -direction.

Generated by Doxygen



1.2 An exact solution 3

Figure 1.1 Sketch of the problem.

We choose the height of the square as the reference length for the non-dimensionalisation by setting L = L, and
use the characteristic stiffness associated with the body's constitutive equation to scale the stresses and the body
forces. For instance, for linear elastic behaviour, we choose the reference stress to be the solid's Young's modulus,
thus setting S = E. The non-dimensional body force is then given by f = −g ey, where

g =
ρg∗L

E

indicates the magnitude of the gravitational load relative to the body's stiffness; see the Solid Mechanics
Theory Tutorial for full details on the non-dimensionalisation of the governing equations.

1.2 An exact solution

Assuming weak loading, i.e. g � 1, the body will undergo small deflections and its deformation will be governed
by the equations of linear elasticity. Given that the walls bounding the solid are slippery, it is easy to show that a
displacement field has the form u = v(y) ey . Inserting this ansatz into the Navier-Lame equations shows that the
non-dimensional displacement in the vertical direction is given by

v(y) = g
(1 + ν)(1− 2ν)

(1− ν)

(
1

2
y2 − y

)
.

The stresses are given by

σxx =
g ν

(1− ν)
(y − 1) , σxy = 0 , and σyy = g (y − 1) .

This shows that, as the solid approaches incompressibility, ν → 1/2, the displacements are suppressed and the
stress distribution becomes hydrostatic with σxx → σyy.

Generated by Doxygen

../../solid_theory/html/index.html#non-dim_solid
../../solid_theory/html/index.html#non-dim_solid


4 Demo problem: Compressible and incompressible behaviour

1.3 Results

Here is a plot of the three non-zero quantities (the vertical displacement v, and the horizontal and vertical stresses,
σxx and σyy, respectively) for g = 10−2 and ν = 0.45. The shaded surface shows the exact solution while the mesh
shows the finite element solution obtained with the displacement formulation of the problem. The solutions obtained
with formulations II and III are graphically indistinguishable. All other quantities (the transverse displacement and
the shear stress σxy) are of order 10−12.

Figure 1.2 Plot of the vertical displacement and the horizontal and vertical stresses, respectively.

The driver code listed below also computes solutions for various other values of ν (including the incompressible case
ν = 1/2), and demonstrates how to enforce "true" incompressibility via formulation III. Furthermore, it computes
a solution based on the incompressible Mooney-Rivlin constitutive law. The agreement between analytical and
computed results is as good as the one shown in the above plot. In particular in all cases where incompressibility
is enforced, the vertical displacement is suppressed and the stress state becomes hydrostatic, as predicted by the
analytical solution.

1.4 Modifying the element's output function

Since we wish to compare the stresses and displacements against the analytical solution, we modify the Solid←↩

Element's output function by means of a wrapper class that overloads the SolidElement::output(...).

//=================start_wrapper==================================
/// Wrapper class for solid element to modify the output
//================================================================
template <class ELEMENT>
class MySolidElement : public virtual ELEMENT
{

public:

/// Constructor: Call constructor of underlying element
MySolidElement() : ELEMENT() {}

/// Overload output function
void output(std::ostream &outfile, const unsigned &n_plot)
{
Vector<double> s(2);

Generated by Doxygen



1.5 Problem Parameters 5

Vector<double> x(2);
Vector<double> xi(2);
DenseMatrix<double> sigma(2,2);

//Tecplot header info
outfile << "ZONE I=" << n_plot << ", J=" << n_plot << std::endl;

//Loop over plot points
for(unsigned l2=0;l2<n_plot;l2++)
{
s[1] = -1.0 + l2*2.0/(n_plot-1);
for(unsigned l1=0;l1<n_plot;l1++)
{
s[0] = -1.0 + l1*2.0/(n_plot-1);

// Get Eulerian and Lagrangian coordinates and the stress
this->interpolated_x(s,x);
this->interpolated_xi(s,xi);
this->get_stress(s,sigma);

//Output the x,y coordinates
for(unsigned i=0;i<2;i++)
{outfile << x[i] << " ";}

// Output displacements, the difference between Eulerian and Lagrangian
// coordinates
for(unsigned i=0;i<2;i++)
{outfile << x[i]-xi[i] << " ";}

//Output stress
outfile << sigma(0,0) << " "

<< sigma(1,0) << " "
<< sigma(1,1) << " "
<< std::endl;

}
}

}
};

1.5 Problem Parameters

As usual we define the various problem parameters in a global namespace. We prepare a pointer to a constitutive
equation and define Poisson's ratio for use with the generalised Hookean constitutive law.

//=======start_namespace==========================================
/// Global variables
//================================================================
namespace Global_Physical_Variables
{

/// Pointer to constitutive law
ConstitutiveLaw* Constitutive_law_pt=0;

/// Poisson’s ratio for Hooke’s law
double Nu=0.45;

We also prepare a pointer to a strain energy function and define the coefficients for the Mooney Rivlin law:

/// Pointer to strain energy function
StrainEnergyFunction* Strain_energy_function_pt=0;

/// First "Mooney Rivlin" coefficient for generalised Mooney Rivlin law
double C1=1.3;

/// Second "Mooney Rivlin" coefficient for generalised Mooney Rivlin law
double C2=1.3;

Finally, we define the gravitational body force.

Generated by Doxygen



6 Demo problem: Compressible and incompressible behaviour

/// Non-dim gravity
double Gravity=0.0;

/// Non-dimensional gravity as body force
void gravity(const double& time,

const Vector<double> &xi,
Vector<double> &b)

{
b[0]=0.0;
b[1]=-Gravity;

}

} //end namespace

1.6 The driver code

The driver code solves the problem with a large number of different formulations and constitutive equations. We
start with the generalised Hookean constitutive equation and consider three different values of Poisson's ratio,
corresponding to compressible, near-incompressible and incompressible behaviour:

//=======start_of_main==================================================
/// Driver for compressed square
//======================================================================
int main()
{

//Flag to indicate if we want the material to be incompressible
bool incompress=false;

// Label for different cases
int case_number=-1;

// Generalised Hookean constitutive equations
//===========================================
{
// Nu values
Vector<double> nu_value(3);
nu_value[0]=0.45;
nu_value[1]=0.499999;
nu_value[2]=0.5;

// Loop over nu values
for (unsigned i=0;i<3;i++)
{
// Set Poisson ratio
Global_Physical_Variables::Nu=nu_value[i];

std::cout << "===========================================\n";
std::cout << "Doing Nu=" << Global_Physical_Variables::Nu

<< std::endl;
std::cout << "===========================================\n";

// Create constitutive equation
Global_Physical_Variables::Constitutive_law_pt =
new GeneralisedHookean(&Global_Physical_Variables::Nu);

First, we solve the problem in the pure displacement formulation, using (the wrapped version of the) displacement-
based QPVDElements. (As discussed above, the displacement formulation cannot be used for ν = 1/2.)

// Displacement-based formulation
//--------------------------------
// (not for nu=1/2, obviously)
if (i!=2)
{
case_number++;
std::cout
<< "Doing Generalised Hookean with displacement formulation: Case "
<< case_number << std::endl;

//Set up the problem with pure displacement based elements

Generated by Doxygen



1.6 The driver code 7

incompress=false;
CompressedSquareProblem<MySolidElement<QPVDElement<2,3>
> >
problem(incompress);

// Run it
problem.run_it(case_number,incompress);
}

Next we consider the pressure/displacement formulation with continuous pressures (Taylor-Hood), using the QP←↩

VDElementWithContinuousPressure element.

// Generalised Hookean with continuous pressure, compressible
//-----------------------------------------------------------
{
case_number++;
std::cout
<< "Doing Generalised Hookean with displacement/cont pressure "
<< "formulation: Case " << case_number << std::endl;

//Set up the problem with continous pressure/displacement
incompress=false;
CompressedSquareProblem<MySolidElement<
QPVDElementWithContinuousPressure<2> > >
problem(incompress);

// Run it
problem.run_it(case_number,incompress);

}

We suppress the listing of the remaining combinations (see the driver code compressed_square.cc for
details):

• Pressure/displacement formulation with discontinuous pressures (Crouzeix-Raviart), using the QPVD←↩

ElementWithPressure element.

• Pressure/displacement formulation with continuous pressures (Taylor-Hood), using the QPVDElement←↩

WithContinuousPressure element, with true incompressibility enforced via formulation III.

• Pressure/displacement formulation with discontinuous pressures (Crouzeix-Raviart), using the QPVD←↩

ElementWithPressure element, with true incompressibility enforced via formulation III.

Before the end of the loop over the different ν values we delete the constitutive equation, allowing it to be re-built
with a different Poisson ratio.

// Clean up
delete Global_Physical_Variables::Constitutive_law_pt;
Global_Physical_Variables::Constitutive_law_pt=0;

}

} // end generalised Hookean

Next we build the strain-energy-based Mooney-Rivlin constitutive law

// Incompressible Mooney Rivlin
//=============================
{

// Create strain energy function
Global_Physical_Variables::Strain_energy_function_pt

=

Generated by Doxygen

../../../../demo_drivers/solid/compressed_square/compressed_square.cc


8 Demo problem: Compressible and incompressible behaviour

new MooneyRivlin(&Global_Physical_Variables::C1,
&Global_Physical_Variables::C2);

// Define a constitutive law (based on strain energy function)
Global_Physical_Variables::Constitutive_law_pt =
new IsotropicStrainEnergyFunctionConstitutiveLaw(
Global_Physical_Variables::Strain_energy_function_pt

);

and solve the problem with QPVDElementWithContinuousPressure and QPVDElementWith←↩

Pressure elements, enforcing true incompressibility enforced via formulation III by setting the incompressible
flag to true.

// Mooney-Rivlin with continous pressure/displacement;
//----------------------------------------------------
// incompressible
//---------------
{
case_number++;
std::cout
<< "Doing Mooney Rivlin with cont pressure formulation: Case "
<< case_number << std::endl;

//Set up the problem with continous pressure/displacement
incompress=true;
CompressedSquareProblem<MySolidElement<
QPVDElementWithContinuousPressure<2> > >
problem(incompress);

// Run it
problem.run_it(case_number,incompress);
}

// Mooney-Rivlin with discontinous pressure/displacement;
//-------------------------------------------------------
// incompressible
//---------------
{
case_number++;
std::cout
<< "Doing Mooney Rivlin with discont pressure formulation: Case "
<< case_number << std::endl;

//Set up the problem with discontinous pressure/displacement
incompress=true;
CompressedSquareProblem<MySolidElement<
QPVDElementWithPressure<2> > >
problem(incompress);

// Run it
problem.run_it(case_number,incompress);
}

// Clean up
delete Global_Physical_Variables::Strain_energy_function_pt

;
Global_Physical_Variables::Strain_energy_function_pt=

0;

delete Global_Physical_Variables::Constitutive_law_pt;
Global_Physical_Variables::Constitutive_law_pt=0;

}

} //end of main

1.7 The Problem class

The Problem class has the usual member functions. The i_case label is used to distinguish different cases
while the boolean incompressible indicates if we wish to enforce incompressibility via formulation III.

Generated by Doxygen



1.8 The Problem constructor 9

//=============begin_problem============================================
/// Problem class
//======================================================================
template<class ELEMENT>
class CompressedSquareProblem : public Problem
{

public:

/// \short Constructor: Pass flag that determines if we want to use
/// a true incompressible formulation
CompressedSquareProblem(const bool& incompress);

/// Update function (empty)
void actions_after_newton_solve() {}

/// Update function (empty)
void actions_before_newton_solve() {}

/// \short Doc the solution & exact (linear) solution for compressible
/// or incompressible materials
void doc_solution(const bool& incompress);

/// Run the job -- doc in RESLTi_case
void run_it(const int& i_case,const bool& incompress);

private:

/// Trace file
ofstream Trace_file;

/// Pointers to node whose position we’re tracing
Node* Trace_node_pt;

/// DocInfo object for output
DocInfo Doc_info;

};

1.8 The Problem constructor

We start by building the mesh – the SolidMesh version of the ElasticRectangularQuadMesh.

//===========start_of_constructor=======================================
/// Constructor: Pass flag that determines if we want to enforce
/// incompressibility
//======================================================================
template<class ELEMENT>
CompressedSquareProblem<ELEMENT>::CompressedSquareProblem

(
const bool& incompress)
{

// Create the mesh

// # of elements in x-direction
unsigned n_x=5;

// # of elements in y-direction
unsigned n_y=5;

// Domain length in x-direction
double l_x=1.0;

// Domain length in y-direction
double l_y=1.0;

//Now create the mesh
mesh_pt() = new ElasticRectangularQuadMesh<ELEMENT>(n_x,n_y,l_x,l_y);

We complete the build of the elements by specifying the constitutive equation and the gravitational body force.

Generated by Doxygen



10 Demo problem: Compressible and incompressible behaviour

//Assign the physical properties to the elements
unsigned n_element=mesh_pt()->nelement();
for(unsigned i=0;i<n_element;i++)
{
//Cast to a solid element
ELEMENT *el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(i));

// Set the constitutive law
el_pt->constitutive_law_pt() =
Global_Physical_Variables::Constitutive_law_pt;

//Set the body force
el_pt->body_force_fct_pt() = Global_Physical_Variables::gravity;

If the element is based on the pressure/displacement form of the principle of virtual displacements we enforce (true)
incompressibility if required. Note that, by default, oomph-lib's pressure/displacement-based solid mechanics
elements do not assume incompressibility, i.e. the default is to use formulation II.

// Is the element based on the pressure/displacement formulation?
PVDEquationsWithPressure<2>* test_pt =
dynamic_cast<PVDEquationsWithPressure<2>*>(mesh_pt()->element_pt(i));
if (test_pt!=0)
{
// Do we want true incompressibility (formulation III in the
// associated tutorial) or not (formulation II)
if (incompress)
{
test_pt->set_incompressible();
}
else
{
// Note that this assignment isn’t strictly necessary as it’s the
// default setting, but it doesn’t do any harm to be explicit.
test_pt->set_compressible();
}

}
} // end compressibility

Finally, we pick a control node to document the solid's load-displacement characteristics and apply the boundary
conditions (no displacements normal to the "slippery" walls) before setting up the equation numbering scheme.

// Choose a control node: The last node in the solid mesh
unsigned nnod=mesh_pt()->nnode();
Trace_node_pt=mesh_pt()->node_pt(nnod-1);

// Pin the left and right boundaries (1 and 2) in the horizontal directions
for (unsigned b=1;b<4;b+=2)
{
unsigned nnod = mesh_pt()->nboundary_node(b);
for(unsigned i=0;i<nnod;i++)
{
dynamic_cast<SolidNode*>(
mesh_pt()->boundary_node_pt(b,i))->pin_position(0);

}
}

// Pin the bottom boundary (0) in the vertical direction
unsigned b=0;
{
unsigned nnod= mesh_pt()->nboundary_node(b);
for(unsigned i=0;i<nnod;i++)
{
dynamic_cast<SolidNode*>(
mesh_pt()->boundary_node_pt(b,i))->pin_position(1);

}
}

//Assign equation numbers
assign_eqn_numbers();

} //end of constructor

Generated by Doxygen



1.9 Post-processing 11

1.9 Post-processing

The post-processing routine documents the load-displacement characteristics in a trace file and outputs the de-
formed domain shape.

//==============start_doc===========================================
/// Doc the solution
//==================================================================
template<class ELEMENT>
void CompressedSquareProblem<ELEMENT>::doc_solution(const

bool& incompress)
{
ofstream some_file;
char filename[100];

// Number of plot points
unsigned n_plot = 5;

// Output shape of and stress in deformed body
sprintf(filename,"%s/soln%i.dat",Doc_info.directory().c_str(),

Doc_info.number());
some_file.open(filename);
mesh_pt()->output(some_file,n_plot);
some_file.close();

// Write trace file: Load/displacement characteristics
Trace_file << Global_Physical_Variables::Gravity << " "

<< Trace_node_pt->x(0) << " "
<< Trace_node_pt->x(1) << " "
<< std::endl;

We then output the exact solution of the linearised equations using the same format as in the element's overloaded
output function.

// Output exact solution for linear elasticity
// -------------------------------------------
sprintf(filename,"%s/exact_soln%i.dat",Doc_info.directory().c_str(),

Doc_info.number());
some_file.open(filename);
unsigned nelem=mesh_pt()->nelement();
Vector<double> s(2);
Vector<double> x(2);
DenseMatrix<double> sigma(2,2);

// Poisson’s ratio
double nu=Global_Physical_Variables::Nu;
if (incompress) nu=0.5;

// Loop over all elements
for (unsigned e=0;e<nelem;e++)
{
//Cast to a solid element
ELEMENT* el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(e));

//Tecplot header info
some_file << "ZONE I=" << n_plot << ", J=" << n_plot << std::endl;

//Loop over plot points
for(unsigned l2=0;l2<n_plot;l2++)
{
s[1] = -1.0 + l2*2.0/(n_plot-1);
for(unsigned l1=0;l1<n_plot;l1++)
{
s[0] = -1.0 + l1*2.0/(n_plot-1);

// Get Lagrangian coordinates
el_pt->interpolated_x(s,x);

// Output the x,y,..
for(unsigned i=0;i<2;i++)
{some_file << x[i] << " ";}

// Exact vertical displacement

Generated by Doxygen



12 Demo problem: Compressible and incompressible behaviour

double v_exact=Global_Physical_Variables::Gravity*
(1.0+nu)*(1.0-2*nu)/(1.0-nu)*(0.5*x[1]*x[1]-x[1]);

// x and y displacement
some_file << "0.0 " << v_exact << " ";

// Stresses
sigma(0,0)=nu/(1.0-nu)*Global_Physical_Variables::Gravity*(x[1]-

1.0);
sigma(1,0)=0.0;
sigma(1,1)=Global_Physical_Variables::Gravity*(x[1]-1.0);

// Output linear stress tensor
some_file << sigma(0,0) << " "

<< sigma(1,0) << " "
<< sigma(1,1) << " "
<< std::endl;

}
}

}
some_file.close();

// Increment label for output files
Doc_info.number()++;

} //end doc

1.10 Comments and Exercises

As usual, oomph-lib provides self-tests that assess if the enforcement incompressibility (or the lack thereof) is
consistent:

• The compiler will not allow the user to enforce incompressibility on elements that are based on the displace-
ment form of the principle of virtual displacements. This is because the displacement-based elements do not
have a member function incompressible().

• Certain constitutive laws, such as the Mooney-Rivlin law used in the present example require an incompress-
ible formulation. If oomph-lib is compiled with the PARANOID flag, an error is thrown if such a constitutive
law is used by an element for which incompressibility has not been requested.

Recall that the default setting is not to enforce incompressibility!

If the library is compiled without the PARANOID flag no warning will be issued but the results will be "wrong"
at least in the sense that the material does not behave like an incompressible Mooney-Rivlin solid. In fact, it
is likely that the Newton solver will diverge. Anyway, as we keep saying, without the PARANOID flag, you're
on your own!

You should experiment with different combinations of constitutive laws and element types to familiarise yourself with
these issues.

Generated by Doxygen



1.11 Source files for this tutorial 13

1.11 Source files for this tutorial

• The source files for this tutorial are located in the directory:

demo_drivers/solid/compressed_square/

• The driver code is:

demo_drivers/solid/compressed_square/compressed_square.cc

1.12 PDF file

A pdf version of this document is available.

Generated by Doxygen

../../../../demo_drivers/solid/compressed_square/compressed_square.cc

	1 Demo problem: Compressible and incompressible behaviour
	1.1 The problem
	1.2 An exact solution
	1.3 Results
	1.4 Modifying the element's output function
	1.5 Problem Parameters
	1.6 The driver code
	1.7 The Problem class
	1.8 The Problem constructor
	1.9 Post-processing
	1.10 Comments and Exercises
	1.11 Source files for this tutorial
	1.12 PDF file


