
Chapter 1

Demo problem: How to create simple refineable
meshes

In a previous example we gave an overview of oomph-lib's powerful mesh adaptation capabilities and
demonstrated the use of the functions

• Problem::refine_uniformly() which performs automatic, uniform refinement of a given (refine-
able) mesh.

• Problem::adapt() which performs automatic mesh adaptation (local refinement or unrefinement),
based on error estimates that are computed (automatically) by a chosen error estimator.

• Problem::newton_solve(...) – a black-box adaptive Newton solver that automatically adapts the mesh
and recomputes the solution until it satisfies the prescribed error bounds.

Provided the problem has been discretised with suitable "refineable mesh" and "refineable element" objects from
oomph-lib's mesh and finite element libraries, none of these functions require any intervention by the user.
Most of oomph-lib finite elements are already available in "refineable" and "non-refineable" forms. For instance,
the RefineableQPoissonElement that we used in the previous example is the refineable equivalent
of the 2D QPoissonElement. Another document describes how to create new refineable elements. Here
we shall discuss how to "upgrade" existing meshes to RefineableMeshes, i.e. meshes that can be used with
oomph-lib's mesh adaptation routines.

The minimum functionality that must be provided by such meshes is specified by the pure virtual functions in the
abstract base class RefineableMesh and all refineable Meshes should be derived from this class. Here is a
graphical representation of the typical inheritance structure for refineable meshes, illustrated for 2D quad meshes:

../../../poisson/fish_poisson/html/index.html
../../../poisson/fish_poisson/html/index.html
../../../to_be_written/html/index.html


2 Demo problem: How to create simple refineable meshes

Figure 1.1 Typical inheritance structure for refineable meshes, illustrated for 2D quad meshes.

The diagram contains two fully-functional meshes:

• The SomeMesh is some basic, non-refineable mesh that is derived directly from the generic Mesh base
class. Typically, it provides a coarse discretisation of a 2D domain with 2D elements from the QElement
family. Its constructor creates the mesh's nodes and elements and initialises the various boundary lookup
schemes. (Consult the "How to build a mesh" section of the Quick Guide for details of the
generic mesh generation process.)

• The RefineableSomeMesh is the refineable equivalent of the basic SomeMesh. It inherits the original
mesh layout from the SomeMesh class. Refineability is added by inheriting from the RefineableQuad←↩

Mesh class; this class implements the mesh adaptation procedures, specified as pure virtual functions in the
RefineableMesh class, for 2D quad meshes, employing QuadTree - based refinement techniques.

Equivalent inheritance structures can be/are implemented for meshes with different element topologies: For in-
stance, the RefineableBrickMesh class is the 3D equivalent of the RefineableQuadMesh class: It per-
forms the mesh adaptation for 3D brick meshes by OcTree - based refinement techniques.

Typically, most of the "hard work" involved in the mesh adaptation process is implemented in the intermediate
classes (such as RefineableQuadMesh or RefineableBrickMesh). Upgrading an existing mesh to a

Generated by Doxygen

../../../quick_guide/html/index.html#mesh
../../../quick_guide/html/index.html


3

refineable version therefore usually requires very little effort. We demonstrate this by re-visiting the 2D Poisson
problem that we analysed in an earlier example:

Two-dimensional model Poisson problem

Solve
2∑

i=1

∂2u

∂x2i
= f(x1, x2), (1)

in the rectangular domain D = {(x1, x2) ∈ [0, 1]× [0, 2]}, with Dirichlet boundary conditions

u|∂D = u0 (2)

where
u0(x1, x2) = tanh(1− α(x1 tan Φ− x2)) (3)

and

f(x1, x2) =

2∑
i=1

∂2u0
∂x2i

(4)

so that u0(x1, x2) represents the exact solution of the problem.

Recall that for large values of α the solution approaches a step function

ustep(x1, x2) =

{
−1 for x2 < x1 tan Φ

1 for x2 > x1 tan Φ

Accurate numerical solution can therefore only be obtained if the mesh is refined – ideally only in the vicinity of the
"step":

Figure 1.2 Plot of the solution with adaptive mesh refinement

We shall discuss the driver code two_d_poisson_adapt.cc which solves the above problem with adaptive
mesh refinement. Its key feature is the creation of the refineable mesh SimpleRefineableRectangular←↩

Generated by Doxygen

../../../poisson/two_d_poisson/html/index.html
../../../../demo_drivers/poisson/two_d_poisson_adapt/two_d_poisson_adapt.cc


4 Demo problem: How to create simple refineable meshes

QuadMesh – the refineable equivalent of the SimpleRectangularQuadMesh used in the earlier
example.

1.1 Creating the refineable mesh

QuadTree-based mesh refinement, as implemented in the RefineableQuadMesh class, requires the
coarse initial mesh to be represented by a QuadTreeForest: Each element in the mesh must be associated
with a QuadTree, and the relative orientation of the various QuadTrees relative to each other must be estab-
lished. This can be done automatically by calling the function RefineableQuadMesh::setup_quadtree←↩

_forest(). The SimpleRefineableRectangularQuadMesh class is therefore very compact. The mesh
is derived from the SimpleRectangularQuadMesh and the Refineable1QuadMesh classes, both of
which are templated by the element type:

//==============================start_of_mesh======================
/// Refineable equivalent of the SimpleRectangularQuadMesh.
/// Refinement is performed by the QuadTree-based procedures
/// implemented in the RefineableQuadMesh base class.
//=================================================================
template<class ELEMENT>
class SimpleRefineableRectangularQuadMesh :
public virtual SimpleRectangularQuadMesh<ELEMENT>,
public RefineableQuadMesh<ELEMENT>

The mesh constructor first calls the constructor of the underlying SimpleRectangularQuadMesh to create
the nodes and elements, and to set up the various boundary lookup schemes. The call to RefineableQuad←↩

Mesh::setup_quadtree_forest() creates the QuadTreeForest representation of the mesh. That's
all!

public:

/// \short Pass number of elements in the horizontal
/// and vertical directions, and the corresponding dimensions.
/// Timestepper defaults to Static.
SimpleRefineableRectangularQuadMesh(const unsigned &Nx,

const unsigned &Ny,
const double &Lx, const double &Ly,
TimeStepper* time_stepper_pt=
&Mesh::Default_TimeStepper) :

SimpleRectangularQuadMesh<ELEMENT>(Nx,Ny,Lx,Ly,time_stepper_pt)
{
// Nodal positions etc. were created in constructor for
// SimpleRectangularQuadMesh<...> --> We only need to set up
// adaptivity information: Associate finite elements with their
// QuadTrees and plant them in a QuadTreeForest:
this->setup_quadtree_forest();

} // end of constructor

The destructor can remain empty, as all memory de-allocation is handled in the mesh base classes.

/// Destructor: Empty
virtual ~SimpleRefineableRectangularQuadMesh() {}

1.2 Global parameters and functions

The specification of the source function and the exact solution in the namespace TanhSolnForPoisson is
identical to that in the non-refineable version discussed in the previous example.

Generated by Doxygen

../../../poisson/two_d_poisson/html/index.html
../../../poisson/two_d_poisson/html/index.html
../../../poisson/two_d_poisson/html/index.html


1.3 The driver code 5

1.3 The driver code

The driver code is very similar to that in the non-refineable version. We simply change the mesh from
the SimpleRectangularQuadMesh to its refineable equivalent, and discretise the problem with nine-node
RefineableQPoissonElements instead of nine-node 2D QPoissonElements. We choose a large value
of α = 50 for the "steepness" parameter and solve the problem with the "black-box" Newton solver, allowing for up
to four adaptive refinements:

//===== start_of_main=====================================================
/// Driver code for 2D Poisson problem
//========================================================================
int main()
{

//Set up the problem
//------------------

// Create the problem with 2D nine-node refineable elements from the
// RefineableQuadPoissonElement family. Pass pointer to source function.
RefineablePoissonProblem<RefineableQPoissonElement<2,3>

>
problem(&TanhSolnForPoisson::get_source);

// Create label for output
//------------------------
DocInfo doc_info;

// Set output directory
doc_info.set_directory("RESLT");

// Step number
doc_info.number()=0;

// Check if we’re ready to go:
//----------------------------
cout << "\n\n\nProblem self-test ";
if (problem.self_test()==0)
{
cout << "passed: Problem can be solved." << std::endl;
}

else
{
throw OomphLibError("Self test failed",

OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}

// Set the orientation of the "step" to 45 degrees
TanhSolnForPoisson::TanPhi=1.0;

// Choose a large value for the steepness of the "step"
TanhSolnForPoisson::Alpha=50.0;

// Solve the problem, performing up to 4 adaptive refinements
problem.newton_solve(4);

//Output the solution
problem.doc_solution(doc_info);

} //end of main

1.4 The problem class

The problem class definition is virtually identical to that in the non-refineable version. The only new
function is an overloaded version of the Problem::mesh_pt() function which returns a pointer to the generic
Mesh object. Our version returns a pointer to the specific mesh, to avoid the use of explicit casts in the rest of the
code.

Generated by Doxygen

../../../poisson/two_d_poisson/html/index.html
../../../poisson/two_d_poisson/html/index.html


6 Demo problem: How to create simple refineable meshes

//====== start_of_problem_class=======================================
/// 2D Poisson problem on rectangular domain, discretised with
/// refineable 2D QPoisson elements. The specific type of element is
/// specified via the template parameter.
//====================================================================
template<class ELEMENT>
class RefineablePoissonProblem : public Problem
{

public:

/// Constructor: Pass pointer to source function
RefineablePoissonProblem(PoissonEquations<2>::PoissonSourceFctPt

source_fct_pt);

/// Destructor (empty)
~RefineablePoissonProblem(){}

/// \short Update the problem specs before solve: Reset boundary conditions
/// to the values from the exact solution.
void actions_before_newton_solve();

/// Update the problem after solve (empty)
void actions_after_newton_solve(){}

/// \short Doc the solution. DocInfo object stores flags/labels for where the
/// output gets written to
void doc_solution(DocInfo& doc_info);

/// \short Overloaded version of the Problem’s access function to
/// the mesh. Recasts the pointer to the base Mesh object to
/// the actual mesh type.
SimpleRefineableRectangularQuadMesh<ELEMENT>*

mesh_pt()
{
return dynamic_cast<SimpleRefineableRectangularQuadMesh<ELEMENT>

*>(
Problem::mesh_pt());

}

private:

/// Pointer to source function
PoissonEquations<2>::PoissonSourceFctPt Source_fct_pt;

}; // end of problem class

[See the discussion of the 1D Poisson problem for a more detailed discussion of the function type Poisson←↩

Equations<2>::PoissonSourceFctPt.]

1.5 The Problem constructor

The problem constructor is virtually identical to that in the non-refineable version. The only change
required is the specification of an error estimator for the mesh adaptations: We create an instance of the Z2←↩

ErrorEstimator and pass a pointer to it to the mesh.

//=====start_of_constructor===============================================
/// Constructor for Poisson problem: Pass pointer to source function.
//========================================================================
template<class ELEMENT>
RefineablePoissonProblem<ELEMENT>::

RefineablePoissonProblem(PoissonEquations<2>::PoissonSourceFctPt
source_fct_pt)

: Source_fct_pt(source_fct_pt)
{

// Setup mesh

// # of elements in x-direction
unsigned n_x=4;

// # of elements in y-direction
unsigned n_y=4;

// Domain length in x-direction

Generated by Doxygen

../../one_d_poisson/html/index.html
../../../poisson/two_d_poisson/html/index.html


1.6 "Actions before solve" 7

double l_x=1.0;

// Domain length in y-direction
double l_y=2.0;

// Build and assign mesh
Problem::mesh_pt() =
new SimpleRefineableRectangularQuadMesh<ELEMENT>(n_x,n_y,l_x,

l_y);

// Create/set error estimator
mesh_pt()->spatial_error_estimator_pt()=new Z2ErrorEstimator;

// Set the boundary conditions for this problem: All nodes are
// free by default -- only need to pin the ones that have Dirichlet conditions
// here.
unsigned num_bound = mesh_pt()->nboundary();
for(unsigned ibound=0;ibound<num_bound;ibound++)
{
unsigned num_nod= mesh_pt()->nboundary_node(ibound);
for (unsigned inod=0;inod<num_nod;inod++)
{
mesh_pt()->boundary_node_pt(ibound,inod)->pin(0);

}
}

// Complete the build of all elements so they are fully functional

// Loop over the elements to set up element-specific
// things that cannot be handled by the (argument-free!) ELEMENT
// constructor: Pass pointer to source function
unsigned n_element = mesh_pt()->nelement();
for(unsigned i=0;i<n_element;i++)
{
// Upcast from GeneralsedElement to the present element
ELEMENT *el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(i));

//Set the source function pointer
el_pt->source_fct_pt() = Source_fct_pt;
}

// Setup equation numbering scheme
cout <<"Number of equations: " << assign_eqn_numbers() << std::endl;

} // end of constructor

1.6 "Actions before solve"

This function is identical to that in the non-refineable version.

1.7 Post-processing

The function doc_solution(...) is identical to that in the non-refineable version.

1.8 Comments

Since most of the "hard work" involved in the mesh adaptation is hidden from "user" we briefly comment on various
steps involved in the mesh adaptation process and highlight certain important implications.

Generated by Doxygen

../../../poisson/two_d_poisson/html/index.html
../../../poisson/two_d_poisson/html/index.html


8 Demo problem: How to create simple refineable meshes

1.8.1 The refinement pattern

The QuadTree - based mesh adaption routines, implemented in the RefineableQuadMesh class, split ele-
ments into four "son elements" if the error estimate exceeds the acceptable maximum. By default, the position of
any newly created nodes is determined from the geometric mapping of the "father" element. For instance, when
a four-node quad "father" element is split into four "sons", five new nodes are created and they are located at
(s0, s1) = (0,−1), (1, 0), (0, 1), (−1, 0) and (0, 0) in the father element's local coordinate system. This pro-
cedure is adequate for problems in which the coarse initial mesh provides a perfect representation of the domain
(e.g. polygonal domains). If the domain has curvilinear boundaries, successive mesh refinements must generate a
more and more accurate representation of these boundaries. This requires slight changes to the mesh adaptation
procedures. We will discuss these in another example.

The splitting of "father" elements into four equal-sized "sons" maintains the aspect ratio of the elements during the
mesh adaptation. The good news is that mesh adaption will not cause a deterioration in the element quality. The
bad news is that poorly designed coarse meshes cannot be improved by mesh adaptation. It is therefore worthwhile
to invest some time into the initial mesh design. For complicated domains, it may be sensible to perform the initial
mesh generation with a dedicated, third-party mesh generator. (We provide another example to illustrate how
to build oomph-lib meshes based on the output from a third-party mesh generator.)

1.8.2 Hanging nodes

The local splitting of elements can create so-called "hanging nodes" – nodes on element edges that are not shared
by any adjacent elements. The nodal values and coordinates at such nodes must be constrained to ensure the
inter-element continuity of the solution. Specifically, the nodal values and coordinates at hanging nodes must be
suitable linear combinations of the values at a number of "master nodes". (In the first instance, the master nodes
are the nodes on the adjacent element's edge that are shared by adjacent elements. If there are multiple levels of
refinement, such nodes can themselves be hanging; the ultimate set of master nodes is therefore be determined
recursively.)

The setup of the hanging node constraints is handled automatically by the mesh adaptation routines and the tech-
nical details are therefore of little relevance to the general user. (The "bottom up" discussion of the
data structure provides details if you are interested.) One aspect of the way in which hanging nodes are
handled in oomph-lib is important, however. Up to now we have accessed nodal values either via the function

Node::set_value(...)

which sets the values stored at a Node, or the pointer-based access function

Node::value_pt(...)

which returns a pointer to these values.

What happens when a node is hanging, i.e. if Node::is_hanging() returns true?

Generated by Doxygen

../../../poisson/fish_poisson2/html/index.html
../../../meshes/third_party_meshes/html/index.html
../../../the_data_structure/html/index.html
../../../the_data_structure/html/index.html


1.9 Source files for this tutorial 9

A convention

The functions

Node::set_value(...)

and

Node::value_pt(...)

always refer to the nodal values stored at the Node itself.
Important: If a node is hanging, the value pointed to by Node::value_pt(...) is not kept up to date!
The correctly constrained nodal value must be computed "on the fly", using the list of master nodes and their
respective weights, stored in the node's HangingInfo object. This is done automatically by the function

Node::value(...)

which returns the appropriate value for hanging and non-hanging nodes: For non-hanging nodes it returns the value
pointed to by Node::value_pt(...); for hanging nodes, it computes the correctly constrained values. When
developing new elements or writing new post-processing routines, the user should therefore always refer to nodal
values with the Node::value(...) function to ensure that the code works correctly in the presence of hanging
nodes.
We provide equivalent functions to access the nodal positions: The function

Node::x(...)

returns the values of (Eulerian) coordinates stored at the node. These values can be out of date if the node is
hanging. The function

Node::position(...)

should be used to determine a node's Eulerian position – this function is the equivalent of Node::value(...) and
determines the nodal coordinates of hanging nodes "on the fly", using the node's list of master nodes and weights.
Finally, we note that while the nodal values and coordinates stored at a node might be out of date while a node
is hanging, the values are automatically assigned up-to-date values when subsequent mesh adaptations change a
node's status from hanging to non-hanging.

1.9 Source files for this tutorial

• The source files for this tutorial are located in the directory:

demo_drivers/poisson/two_d_poisson_adapt/

• The driver code is:

demo_drivers/poisson/two_d_poisson_adapt/two_d_poisson_adapt.cc

1.10 PDF file

A pdf version of this document is available.

Generated by Doxygen

../../../../demo_drivers/poisson/two_d_poisson_adapt/two_d_poisson_adapt.cc

	1 Demo problem: How to create simple refineable meshes
	1.1 Creating the refineable mesh
	1.2 Global parameters and functions
	1.3 The driver code
	1.4 The problem class
	1.5 The Problem constructor
	1.6 `¨Actions before solve`¨
	1.7 Post-processing
	1.8 Comments
	1.8.1 The refinement pattern
	1.8.2 Hanging nodes

	1.9 Source files for this tutorial
	1.10 PDF file


