
Chapter 1

Demo problem: A static interface between two
viscous fluids

1.1 Overview of the problem

We consider a closed rectangular container of unit width that contains two immiscible fluids at rest. The lower fluid
is of a prescribed volume V and the interface between the two fluids meets the wall of the container at a contact
angle θc. In the absence of any body forces or external forces, a static solution is obtained in which the velocity
field is zero, the fluid pressure in each layer is constant, and free surface is of constant curvature (an arc of a circle
in two-dimensions), set by the contact angle and the geometry of the domain. From simple geometry, the mean
curvature of the interface in the present problem is κ = 1/r = 2 cos θc.

We shall be rather brief in our discussion of this problem because it is extremely similar to the static free
surface bounding a single layer of viscous fluid. In fact, the main difference is that the
region of upper fluid is no longer treated as a single external pressure, but must be meshed so that the Navier–
Stokes equations can be solved within it. In fact, the most significant difference between the two problems is that
we need to construct a two-layer mesh. Dynamic two-fluid problems are introduced in another
tutorial, but the static problem discussed here is again complicated by the need to enforce a constant volume
constraint.

1.2 Enforcing the volume constraint

Unlike the equivalent single-fluid problem , there is no external pressure, so the volume constraint
must be associated with an internal pressure degree of freedom. Thus, we must hijack a pressure variable and we
choose to do so in the upper fluid.

//Hijack one of the pressure values in the upper fluid. Its value
//will affect the residual of that element but it will not
//be determined by it!
Traded_pressure_data_pt = dynamic_cast<ELEMENT*>(
Bulk_mesh_pt->upper_layer_element_pt(0))->hijack_internal_value(0,0);

In addition, we must fix another fluid pressure at a fixed reference value so that the problem is non-degenerate. It
is conceptually appealing to fix the reference pressure in the other (lower) fluid because the (constant) pressure in
the upper fluid is already "being set" by the volume constraint.

// Pin a single pressure value: Set the pressure dof 0 in element 0
// of the lower layer to zero.
dynamic_cast<ELEMENT*>(Bulk_mesh_pt->lower_layer_element_pt(0))
->fix_pressure(0,0.0);

../../static_single_layer/html/index.html
../../static_single_layer/html/index.html
../../two_layer_interface/html/index.html
../../two_layer_interface/html/index.html
../../static_single_layer/html/index.html

2 Demo problem: A static interface between two viscous fluids

1.3 Enforcing the contact angle constraint

The method of enforcing the contact angle constraint is exactly the same as discussed in the single-layer
tutorial.

1.4 Constructing the Two-Layer Elastic Mesh

We must create a two-layer elastic mesh that will allow us access to the elements in each fluid. We will also
need to set the volume constraint by adding ElasticLineVolumeConstraintBoundingElements to
the boundaries that surround one of the fluids and to add the ElasticLineFluidInterfaceElements
along the interface. Thus, we need to change the boundaries of the existing mesh.

We begin by inheriting from the ElasticRectangularQuadMesh.

//==start_of_specific_mesh_class==
/// Two layer mesh which employs a pseudo-solid node-update strategy.
/// This class is essentially a wrapper to an
/// ElasticRectangularQuadMesh, with an additional boundary
/// to represent the interface between the two fluid layers. In addition,
/// the mesh paritions the elements into those above and below
/// the interface and relabels boundaries so that we can impose
/// a volume constraint on the lower or upper fluid.
///
/// 3
/// ---------------------------------------
/// | |
/// 4 | | 2
/// | 6 |
/// ---------------------------------------
/// | |
/// 5 | | 1
/// | |
/// ---------------------------------------
/// 0
//==
template <class ELEMENT>
class ElasticTwoLayerMesh :
public ElasticRectangularQuadMesh<ELEMENT>

The arguments to the constructor specify the number of elements in the horizontal direction and in each layer and
also the width of the container and the height of each layer. The remaining arguments determine whether the mesh
should be made periodic in the x direction and are the TimeStepper object.

ElasticTwoLayerMesh(const unsigned &nx,
const unsigned &ny1,
const unsigned &ny2,
const double &lx,
const double &h1,
const double &h2,
const bool& periodic_in_x=false,
TimeStepper* time_stepper_pt=
&Mesh::Default_TimeStepper)

We provide separate storage for elements above and below the interface

//Set up the pointers to elements in the upper and lower fluid
//Calculate numbers of nodes in upper and lower regions
unsigned long n_lower = nx*ny1;
unsigned long n_upper = nx*ny2;
//Loop over lower elements and push back onto the array
Lower_layer_element_pt.resize(n_lower);
for(unsigned e=0;e<n_lower;e++)
{
Lower_layer_element_pt[e] = this->finite_element_pt(e);

Generated by Doxygen

../../static_single_layer/html/index.html#contact_angle
../../static_single_layer/html/index.html#contact_angle

1.4 Constructing the Two-Layer Elastic Mesh 3

}
//Loop over upper elements and push back onto the array
Upper_layer_element_pt.resize(n_upper);
for(unsigned e=0;e<n_upper;e++)
{
Upper_layer_element_pt[e] = this->finite_element_pt(n_lower + e);

}
//end of upper and lower fluid element assignment

and the elements adjacent to the interface in the upper and lower fluid.

//Set the elements adjacent to the interface on both sides
Interface_lower_boundary_element_pt.resize(nx);
Interface_upper_boundary_element_pt.resize(nx);
{
unsigned count_lower=nx*(ny1-1);
unsigned count_upper= count_lower + nx;
for(unsigned e=0;e<nx;e++)
{
Interface_lower_boundary_element_pt[e] =
this->finite_element_pt(count_lower); ++count_lower;
Interface_upper_boundary_element_pt[e] =
this->finite_element_pt(count_upper); ++count_upper;

}
} //end of bulk elements next to interface setup

We will use these elements adjacent to the interface to construct the ElasticLineFluidInterface←↩

Elements and it is important that we only add one layer of interface elements, as discussed in another tutorial.

We next change the number of boundaries

// Reset the number of boundaries
this->set_nboundary(7);

and then reassign the existing boundary nodes to the new numbering scheme. This is tedious and not terribly
instructive, so is not shown, but it's all in the code if you want to see how it's done.

Finally, we add the nodes to the new interface boundary and setup the lookup schemes for the bulk elements
adjacent to the new boundaries.

//Add the nodes to the interface

//Read out number of linear points in the element
unsigned n_p = dynamic_cast<ELEMENT*>
(this->finite_element_pt(0))->nnode_1d();

//Add the nodes on the interface to the boundary 6
//Storage for boundary coordinates (x-coordinate)
b_coord.resize(1);
this->Boundary_coordinate_exists[6];
//Starting index of the nodes
unsigned n_start=0;
for(unsigned e=0;e<nx;e++)
{
//If we are past the
if(e>0) {n_start=1;}
//Get the layer of elements just above the interface
FiniteElement* el_pt = this->finite_element_pt(nx*ny1+e);
//The first n_p nodes lie on the boundary
for(unsigned n=n_start;n<n_p;n++)
{
Node* nod_pt = el_pt->node_pt(n);
this->convert_to_boundary_node(nod_pt);
this->add_boundary_node(6,nod_pt);
b_coord[0] = nod_pt->x(0);
nod_pt->set_coordinates_on_boundary(6,b_coord);
}

}

// Set up the boundary element information
this->setup_boundary_element_info();

Generated by Doxygen

4 Demo problem: A static interface between two viscous fluids

1.5 The problem class

The problem class is extremely similar to that in the singer-layer problem. The main differences are
that the ElasticTwoLayerMesh is used instead of the ElasticRectangularQuadMesh and the bound-
ary conditions are modified to take the new boundary numbering into account. In addition, the free surface elements
and volume constraint elements are created using the lookup schemes in the ElasticTwoLayerMesh to en-
sure that only a single layer of elements are included on the free surface. If we used the lookup schemes assigned
by the generic function Mesh::setup_boundary_element_info() bulk elements on both sides of internal
boundaries will be included, so we would construct twice as many interface elements as required.

1.6 Comments and Exercises

1.6.1 Comments

• The driver code also contains a formulation in which SpineElements are used. Happily, the answers
produced by both formulations are the same.

• An axisymmetric version of the problem is also included in the library. The problem is so similar that it is not
described in any further detail. For a list of the differences between the two-dimensional and axisymmetric
formulations of the single-layer problem see another tutorial.

1.6.2 Exercises

1. Confirm that the computed pressure difference across the interface agrees with the analytic expression and
the single-layer computations.

2. What happens if you do not fix a pressure?

3. What happens if you fix the pressure that is traded for the volume constraint?

4. Can you fix the reference pressure and choose the traded pressure value from the same fluid?

5. Use the generic Mesh::boundary_element_pt() function to construct the interface elements. What
happens? Why?

6. Modify the problem to include a non-zero gravitational body force? What happens to the interface in this
case?

1.7 Source files for this tutorial

• The source files for this tutorial are located in the directory:

demo_drivers/navier_stokes/static_cap/

• The driver code is:

Generated by Doxygen

../../static_single_layer/html/index.html
../../../axisym_navier_stokes/axi_static_cap/html/index.html

1.8 PDF file 5

demo_drivers/navier_stokes/static_cap/static_two_layer.cc

• Source files for the axisymmetric version of the problem are located in the directory:

demo_drivers/axisym_navier_stokes/two_fluid_spherical_cap/

• The driver code is:

demo_drivers/axisym_navier_stokes/two_fluid_spherical_cap/two_fluid_←↩

spherical_cap.cc

1.8 PDF file

A pdf version of this document is available.

Generated by Doxygen

../../../../demo_drivers/navier_stokes/static_cap/static_two_layer.cc
../../../../demo_drivers/axisym_navier_stokes/two_fluid_spherical_cap/two_fluid_spherical_cap.cc
../../../../demo_drivers/axisym_navier_stokes/two_fluid_spherical_cap/two_fluid_spherical_cap.cc
../../../../demo_drivers/axisym_navier_stokes/two_fluid_spherical_cap/two_fluid_spherical_cap.cc

	1 Demo problem: A static interface between two viscous fluids
	1.1 Overview of the problem
	1.2 Enforcing the volume constraint
	1.3 Enforcing the contact angle constraint
	1.4 Constructing the Two-Layer Elastic Mesh
	1.5 The problem class
	1.6 Comments and Exercises
	1.6.1 Comments
	1.6.2 Exercises

	1.7 Source files for this tutorial
	1.8 PDF file

