Example problem: Steady flow in a curved tube

The problem of steady flow in a curved tube is considered with a prescribed Poiseuille flow at the inlet and a traction-free outlet condition. It is not clear that the latter is appropriate, but the main aim of this example is to check that the TubeMesh works correctly.

A detailed comparison between the flow field and the Dean solution should be performed for validation purposes, but the qualitative features seem reasonable.

curve_geom.gif
Sketch of the problem with pressure contours.
curve_sec.gif
Contours of axial velocity and secondary streamlines.

Detailed documentation to be written. Here's the driver code...

//LIC// ====================================================================
//LIC// This file forms part of oomph-lib, the object-oriented,
//LIC// multi-physics finite-element library, available
//LIC// at http://www.oomph-lib.org.
//LIC//
//LIC// Version 1.0; svn revision $LastChangedRevision$
//LIC//
//LIC// $LastChangedDate$
//LIC//
//LIC// Copyright (C) 2006-2016 Matthias Heil and Andrew Hazel
//LIC//
//LIC// This library is free software; you can redistribute it and/or
//LIC// modify it under the terms of the GNU Lesser General Public
//LIC// License as published by the Free Software Foundation; either
//LIC// version 2.1 of the License, or (at your option) any later version.
//LIC//
//LIC// This library is distributed in the hope that it will be useful,
//LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
//LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
//LIC// Lesser General Public License for more details.
//LIC//
//LIC// You should have received a copy of the GNU Lesser General Public
//LIC// License along with this library; if not, write to the Free Software
//LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
//LIC// 02110-1301 USA.
//LIC//
//LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
//LIC//
//LIC//====================================================================
///Driver for a 3D navier stokes steady entry flow problem in a
///uniformly curved tube
//Generic routines
#include "generic.h"
#include "navier_stokes.h"
// The mesh
#include "meshes/tube_mesh.h"
using namespace std;
using namespace oomph;
//=start_of_MyCurvedCylinder===================================
//A geometric object that represents the geometry of the domain
//================================================================
class MyCurvedCylinder : public GeomObject
{
public:
/// Constructor that takes the radius and curvature of the tube
/// as its arguments
MyCurvedCylinder(const double &radius, const double &delta) :
GeomObject(3,3), Radius(radius), Delta(delta) { }
/// Destructor
virtual~MyCurvedCylinder(){}
///Lagrangian coordinate xi
void position (const Vector<double>& xi, Vector<double>& r) const
{
r[0] = (1.0/Delta)*cos(xi[0]) + xi[2]*Radius*cos(xi[0])*cos(xi[1]);
r[1] = (1.0/Delta)*sin(xi[0]) + xi[2]*Radius*sin(xi[0])*cos(xi[1]);
r[2] = -xi[2]*Radius*sin(xi[1]);
}
/// Return the position of the tube as a function of time
/// (doesn't move as a function of time)
void position(const unsigned& t,
const Vector<double>& xi, Vector<double>& r) const
{
position(xi,r);
}
private:
///Storage for the radius of the tube
double Radius;
//Storage for the curvature of the tube
double Delta;
};
//=start_of_namespace================================================
/// Namespace for physical parameters
//===================================================================
{
/// Reynolds number
double Re=50;
/// The desired curvature of the pipe
double Delta=0.1;
} // end_of_namespace
//=start_of_problem_class=============================================
/// Entry flow problem in tapered tube domain
//====================================================================
template<class ELEMENT>
class SteadyCurvedTubeProblem : public Problem
{
public:
/// Constructor: Pass DocInfo object and target errors
SteadyCurvedTubeProblem(DocInfo& doc_info, const double& min_error_target,
const double& max_error_target);
/// Destructor (empty)
/// \short Update the problem specs before solve
void actions_before_newton_solve();
/// After adaptation: Pin redudant pressure dofs.
void actions_after_adapt()
{
// Pin redudant pressure dofs
RefineableNavierStokesEquations<3>::
pin_redundant_nodal_pressures(mesh_pt()->element_pt());
}
/// Doc the solution
void doc_solution();
/// \short Overload generic access function by one that returns
/// a pointer to the specific mesh
RefineableTubeMesh<ELEMENT>* mesh_pt()
{
return dynamic_cast<RefineableTubeMesh<ELEMENT>*>(Problem::mesh_pt());
}
private:
/// Doc info object
DocInfo Doc_info;
///Pointer to GeomObject that specifies the domain volume
GeomObject *Volume_pt;
}; // end_of_problem_class
//=start_of_constructor===================================================
/// Constructor: Pass DocInfo object and error targets
//========================================================================
template<class ELEMENT>
const double& min_error_target,
const double& max_error_target)
: Doc_info(doc_info)
{
// Setup mesh:
//------------
// Create GeomObject that specifies the domain geometry
//The radius of the tube is one and the curvature is specified by
//the global variable Delta.
//Define pi
const double pi = MathematicalConstants::Pi;
//Set the centerline coordinates spanning the mesh
Vector<double> centreline_limits(2);
centreline_limits[0] = 0.0;
centreline_limits[1] = pi;
//Set the positions of the angles that divide the outer ring
//These must be in the range -pi,pi, ordered from smallest to
//largest
Vector<double> theta_positions(4);
theta_positions[0] = -0.75*pi;
theta_positions[1] = -0.25*pi;
theta_positions[2] = 0.25*pi;
theta_positions[3] = 0.75*pi;
//Define the radial fraction of the central box (always halfway
//along the radius)
Vector<double> radial_frac(4,0.5);
// Number of layers in the initial mesh
unsigned nlayer=6;
// Build and assign mesh
Problem::mesh_pt()= new RefineableTubeMesh<ELEMENT>(Volume_pt,
centreline_limits,
theta_positions,
radial_frac,
nlayer);
// Set error estimator
Z2ErrorEstimator* error_estimator_pt=new Z2ErrorEstimator;
mesh_pt()->spatial_error_estimator_pt()=error_estimator_pt;
// Error targets for adaptive refinement
mesh_pt()->max_permitted_error()=max_error_target;
mesh_pt()->min_permitted_error()=min_error_target;
// Set the boundary conditions for this problem: All nodal values are
// free by default -- just pin the ones that have Dirichlet conditions
// here.
//Choose the conventional form by setting gamma to zero
//The boundary conditions will be pseudo-traction free (d/dn = 0)
ELEMENT::Gamma[0] = 0.0;
ELEMENT::Gamma[1] = 0.0;
ELEMENT::Gamma[2] = 0.0;
//Loop over the boundaries
unsigned num_bound = mesh_pt()->nboundary();
for(unsigned ibound=0;ibound<num_bound;ibound++)
{
unsigned num_nod= mesh_pt()->nboundary_node(ibound);
for (unsigned inod=0;inod<num_nod;inod++)
{
// Boundary 0 is the inlet symmetry boundary:
// Boundary 1 is the tube wall
// Pin all values
if((ibound==0) || (ibound==1))
{
mesh_pt()->boundary_node_pt(ibound,inod)->pin(0);
mesh_pt()->boundary_node_pt(ibound,inod)->pin(1);
mesh_pt()->boundary_node_pt(ibound,inod)->pin(2);
}
}
} // end loop over boundaries
// Loop over the elements to set up element-specific
// things that cannot be handled by constructor
unsigned n_element = mesh_pt()->nelement();
for(unsigned i=0;i<n_element;i++)
{
// Upcast from GeneralisedElement to the present element
ELEMENT* el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(i));
//Set the Reynolds number, etc
el_pt->re_pt() = &Global_Physical_Variables::Re;
}
// Pin redudant pressure dofs
RefineableNavierStokesEquations<3>::
pin_redundant_nodal_pressures(mesh_pt()->element_pt());
//Attach the boundary conditions to the mesh
cout <<"Number of equations: " << assign_eqn_numbers() << std::endl;
} // end_of_constructor
//=start_of_actions_before_newton_solve===================================
/// Set the inflow boundary conditions
//========================================================================
template<class ELEMENT>
{
// (Re-)assign velocity profile at inflow values
//--------------------------------------------
unsigned ibound=0;
unsigned num_nod= mesh_pt()->nboundary_node(ibound);
for (unsigned inod=0;inod<num_nod;inod++)
{
// Recover coordinates of tube relative to centre position
double x=mesh_pt()->boundary_node_pt(ibound,inod)->x(0) -
double z=mesh_pt()->boundary_node_pt(ibound,inod)->x(2);
//Calculate the radius
double r=sqrt(x*x+z*z);
// Poiseuille-type profile for axial velocity (component 1 at the inlet)
mesh_pt()->boundary_node_pt(ibound,inod)->
set_value(1,(1.0-pow(r,2.0)));
}
} // end_of_actions_before_newton_solve
//=start_of_doc_solution==================================================
/// Doc the solution
//========================================================================
template<class ELEMENT>
{
//Output file stream
ofstream some_file;
char filename[100];
// Number of plot points
unsigned npts;
npts=5;
//Need high precision for large radii of curvature
//some_file.precision(10);
// Output solution labelled by the Reynolds number
sprintf(filename,"%s/soln_Re%g.dat",Doc_info.directory().c_str(),
some_file.open(filename);
mesh_pt()->output(some_file,npts);
some_file.close();
} // end_of_doc_solution
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
//=start_of_main=======================================================
/// Driver for 3D entry flow into a curved tube. If there are
/// any command line arguments, we regard this as a validation run
/// and perform only a single adaptation
//=====================================================================
int main(int argc, char* argv[])
{
// Store command line arguments
CommandLineArgs::setup(argc,argv);
// Allow (up to) two rounds of fully automatic adapation in response to
//-----------------------------------------------------------------------
// error estimate
//---------------
unsigned max_adapt;
double max_error_target,min_error_target;
// Set max number of adaptations in black-box Newton solver and
// error targets for adaptation
if (CommandLineArgs::Argc==1)
{
// Up to two adaptations
max_adapt=2;
// Error targets for adaptive refinement
max_error_target=0.001;
min_error_target=0.00001;
}
// Validation run: Only one adaptation. Relax error targets
// for faster solution
else
{
// Validation run: Just one round of adaptation
max_adapt=1;
// Error targets for adaptive refinement
max_error_target=0.02;
min_error_target=0.002;
}
// end max_adapt setup
// Set up doc info
DocInfo doc_info;
// Do Taylor-Hood elements
//------------------------
{
// Set output directory
doc_info.set_directory("RESLT_TH");
// Step number
doc_info.number()=0;
// Build problem
problem(doc_info,min_error_target,max_error_target);
cout << " Doing Taylor-Hood elements " << std::endl;
// Solve the problem
problem.newton_solve(max_adapt);
// Doc solution after solving
problem.doc_solution();
}
// Do Crouzeix-Raviart elements
//------------------------
{
// Set output directory
doc_info.set_directory("RESLT_CR");
// Step number
doc_info.number()=0;
// Build problem
problem(doc_info,min_error_target,max_error_target);
cout << " Doing Crouzeix-Raviart elements " << std::endl;
// Solve the problem
problem.newton_solve(max_adapt);
// Doc solution after solving
problem.doc_solution();
}
} // end_of_main


PDF file

A pdf version of this document is available.