
Chapter 1

Example problem: Adaptive solution of the 2D
driven cavity problem

In a previous example we demonstrated the solution of the 2D driven cavity problem using oomph-lib's
2D Taylor-Hood and Crouzeix-Raviart Navier-Stokes elements on a uniform mesh. The computed solution was
clearly under-resolved near the corners of the domain where the discontinuity in the velocity boundary conditions
creates pressure singularities.

In this example we shall re-solve the driven cavity problem with the refineable versions of oomph-lib's quadri-
lateral Navier-Stokes elements – the RefineableQTaylorHoodElement<2> and the RefineableQ←↩

CrouzeixRaviartElement<2>. Enabling spatial adaptivity for this problem involves the same straightfor-
ward steps as for a scalar problem:

• The domain must be discretised with a refineable mesh, i.e. a mesh that is derived from the Refineable←↩

Mesh class.

• An ErrorEstimator object must be specified.

Two additional steps tend to be required during the adaptive solution of Navier-Stokes problems:

• Recall that in Navier-Stokes problems in which the velocity is prescribed along the entire domain boundary,
the pressure is only determined up an arbitrary constant, making it necessary to "pin" one pressure value.
If the "pinned" pressure degree of freedom is associated with an element that is unrefined during the mesh
adaptation, the "pinned " degree of freedom may no longer exist in the adapted problem. To ensure that
exactly one pressure degree of freedom is pinned when re-solving the adapted problem, we recommend
using the function Problem::actions_after_adapt() to

1. unpin all pressure values, e.g. using the function

NavierStokesEquations<DIM>::unpin_all_pressure_dofs(...)

2. pin a pressure degree of freedom that is known to exist (e.g. the first pressure degree of freedom in the
first element of the mesh – whichever element this may be), e.g. using the function

NavierStokesEquations<DIM>::fix_pressure(...)

• The possible presence of hanging nodes in an adapted mesh requires special treatment for elements (e.g.
Taylor-Hood elements) in which the pressure is represented by a low-order interpolation between a subset of
the element's nodal values. The required tasks are performed by the function

NavierStokesEquations<DIM>::pin_redundant_nodal_pressures(...)

which should be called

../../driven_cavity/html/index.html


2 Example problem: Adaptive solution of the 2D driven cavity problem

1. before assigning the equation numbers for the first time, and

2. after every mesh adaptation.

[If the user "forgets" to call this function, a warning is issued if the library is compiled with the PARANOID
flag.]

The driver code discussed below illustrates the use of these functions. The section Comments and Exercises
provides a more detailed discussion of the technical details involved in their implementation.

1.1 The example problem

We shall illustrate the spatially adaptive solution of the steady 2D Navier-Stokes equations by re-considering the 2D
steady driven cavity problem:

The 2D steady driven cavity problem in a square domain.

Solve

Re uj
∂ui

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
∂ui

∂xj
+

∂uj

∂xi

)
, (1)

and
∂ui

∂xi
= 0,

in the square domain D = {xi ∈ [0, 1]; i = 1, 2}, subject to the Dirichlet boundary conditions

u|∂D = (0, 0), (2)

on right, top and left boundaries and

u|∂D = (1, 0), (3)

on the bottom boundary, x2 = 0 .

1.1.1 Solution with Crouzeix-Raviart elements

The figure below shows "carpet plots" of the velocity and pressure fields as well as a contour plot of the pressure
distribution with superimposed streamlines for a Reynolds number of Re = 100. The velocity vanishes along the
entire domain boundary, apart from the bottom boundary (x2 = 0) where the moving "lid" imposes a unit tangential
velocity which drives a large vortex, centred at (x1, x2) ≈ (0.62, 0.26). The pressure singularities created by the
velocity discontinuities at (x1, x2) = (0, 0) and (x1, x2) = (1, 0) are now much better resolved.

Generated by Doxygen



1.1 The example problem 3

Figure 1.1 Plot of the velocity and pressure fields computed with adaptive Crouzeix-Raviart elements for
Re=100.

1.1.2 Solution with Taylor-Hood elements

The next figure shows the corresponding results obtained from a computation with adaptive Taylor-Hood elements.

Figure 1.2 Plot of the velocity and pressure fields computed with adaptive Taylor-Hood elements for
Re=100.

Generated by Doxygen



4 Example problem: Adaptive solution of the 2D driven cavity problem

1.2 Global parameters and functions

The global namespace used to define the problem parameters is identical to the one in the non-adaptive
version.

//==start_of_namespace===================================================
/// Namespace for physical parameters
//=======================================================================
namespace Global_Physical_Variables
{
/// Reynolds number
double Re=100;
} // end_of_namespace

1.3 The driver code

The main driver code is virtually identical to that in the non-adaptive version. We specify the appropriate
refineable element types and use the black-box adaptive Newton solver, allowing for up to three levels of spatial
adaptivity.

//==start_of_main======================================================
/// Driver for RefineableDrivenCavity test problem
//=====================================================================
int main()
{

// Set output directory
DocInfo doc_info;
doc_info.set_directory("RESLT");

// Set max. number of black-box adaptation
unsigned max_adapt=3;

// Solve problem with Taylor Hood elements
//---------------------------------------
{
//Build problem
RefineableDrivenCavityProblem<RefineableQTaylorHoodElement<2>

> problem;

// Solve the problem with automatic adaptation
problem.newton_solve(max_adapt);

// Step number
doc_info.number()=0;

//Output solution
problem.doc_solution(doc_info);

} // end of Taylor Hood elements

// Solve problem with Crouzeix Raviart elements
//--------------------------------------------
{
// Build problem
RefineableDrivenCavityProblem<RefineableQCrouzeixRaviartElement<2>

> problem;

// Solve the problem with automatic adaptation
problem.newton_solve(max_adapt);

// Step number
doc_info.number()=1;

//Output solution
problem.doc_solution(doc_info);

} // end of Crouzeix Raviart elements

} // end_of_main

Generated by Doxygen

../../driven_cavity/html/index.html#namespace
../../driven_cavity/html/index.html#namespace
../../driven_cavity/html/index.html#main


1.4 The problem class 5

1.4 The problem class

Most of the problem class is identical to that in the non-adaptive version of the code : We provide
a constructor and destructor and use the function Problem::actions_before_newton_solve() to (re-
)assign the boundary conditions.

//==start_of_problem_class============================================
/// Driven cavity problem in rectangular domain, templated
/// by element type.
//====================================================================
template<class ELEMENT>
class RefineableDrivenCavityProblem : public Problem
{

public:

/// Constructor
RefineableDrivenCavityProblem();

/// Destructor: Empty
~RefineableDrivenCavityProblem() {}

/// Update the after solve (empty)
void actions_after_newton_solve() {}

/// \short Update the problem specs before solve.
/// (Re-)set velocity boundary conditions just to be on the safe side...
void actions_before_newton_solve()
{
// Setup tangential flow along boundary 0:
unsigned ibound=0;
unsigned num_nod= mesh_pt()->nboundary_node(ibound);
for (unsigned inod=0;inod<num_nod;inod++)
{
// Tangential flow
unsigned i=0;
mesh_pt()->boundary_node_pt(ibound,inod)->set_value(i,1.0);
// No penetration
i=1;
mesh_pt()->boundary_node_pt(ibound,inod)->set_value(i,0.0);
}

// Overwrite with no flow along all other boundaries
unsigned num_bound = mesh_pt()->nboundary();
for(unsigned ibound=1;ibound<num_bound;ibound++)
{
unsigned num_nod= mesh_pt()->nboundary_node(ibound);
for (unsigned inod=0;inod<num_nod;inod++)
{
for (unsigned i=0;i<2;i++)
{
mesh_pt()->boundary_node_pt(ibound,inod)->set_value(i,0.0);

}
}

}
} // end_of_actions_before_newton_solve

As discussed in the introduction, we use the function Problem::actions_after_adapt() to ensure that,
regardless of the mesh adaptation pattern, exactly one pressure degree of freedom is pinned. We start by unpinning
all pressure degrees of freedom:

/// After adaptation: Unpin pressure and pin redudant pressure dofs.
void actions_after_adapt()
{
// Unpin all pressure dofs
RefineableNavierStokesEquations<2>::
unpin_all_pressure_dofs(mesh_pt()->element_pt());

[Note that this function (implemented as a static member function of the NavierStokesEquations<DIM>
class) unpins the pressure degrees of freedom in all elements that are specified by the input argument (a vector of
pointers to the these elements). This implementation allows certain elements in a mesh to be excluded from the
procedure; this is required in problems where a mesh contains multiple element types. In the present problem, the

Generated by Doxygen

../../driven_cavity/html/index.html#problem


6 Example problem: Adaptive solution of the 2D driven cavity problem

mesh contains only Navier-Stokes elements, so we pass a vector of pointers to all elements in the mesh (returned
by the function Mesh::element_pt()] to the function.]

Following the mesh adaptation any redundant nodal pressures must be pinned, so that hanging pressure degrees of
freedom are treated correctly. We note that calling this function is essential for Taylor-Hood elements. The function
may be executed without any adverse effect for all other Navier-Stokes elements; see Comments and Exercises for
more details on the implementation.

// Pin redundant pressure dofs
RefineableNavierStokesEquations<2>::
pin_redundant_nodal_pressures(mesh_pt()->element_pt());

Finally, we pin a single pressure degree of freedom (the first pressure value in the first element in the mesh) and set
its value to zero.

// Now set the first pressure dof in the first element to 0.0
fix_pressure(0,0,0.0);
} // end_of_actions_after_adapt

The remainder of the problem class remains as before.

/// Doc the solution
void doc_solution(DocInfo& doc_info);

private:

///Fix pressure in element e at pressure dof pdof and set to pvalue
void fix_pressure(const unsigned &e, const unsigned &pdof,

const double &pvalue)
{
//Cast to proper element and fix pressure
dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(e))->

fix_pressure(pdof,pvalue);
} // end_of_fix_pressure

}; // end_of_problem_class

1.5 The problem constructor

The constructor remains largely as before. We create an adaptive mesh, build and assign an error estimator and
pin the redundant nodal pressure degrees of freedom.

//==start_of_constructor==================================================
/// Constructor for RefineableDrivenCavity problem
///
//========================================================================
template<class ELEMENT>
RefineableDrivenCavityProblem<ELEMENT>::RefineableDrivenCavityProblem

()
{

// Setup mesh

// # of elements in x-direction
unsigned n_x=10;

// # of elements in y-direction
unsigned n_y=10;

// Domain length in x-direction

Generated by Doxygen

../../driven_cavity/html/index.html#problem
../../driven_cavity/html/index.html#constructor


1.6 Post-processing 7

double l_x=1.0;

// Domain length in y-direction
double l_y=1.0;

// Build and assign mesh
Problem::mesh_pt() =
new RefineableRectangularQuadMesh<ELEMENT>(n_x,n_y,l_x,l_y);

// Set error estimator
Z2ErrorEstimator* error_estimator_pt=new Z2ErrorEstimator;
dynamic_cast<RefineableRectangularQuadMesh<ELEMENT>*>(mesh_pt())->
spatial_error_estimator_pt()=error_estimator_pt;

// Set the boundary conditions for this problem: All nodes are
// free by default -- just pin the ones that have Dirichlet conditions
// here: All boundaries are Dirichlet boundaries.
unsigned num_bound = mesh_pt()->nboundary();
for(unsigned ibound=0;ibound<num_bound;ibound++)
{
unsigned num_nod= mesh_pt()->nboundary_node(ibound);
for (unsigned inod=0;inod<num_nod;inod++)
{
// Loop over values (u and v velocities)
for (unsigned i=0;i<2;i++)
{
mesh_pt()->boundary_node_pt(ibound,inod)->pin(i);
}

}
} // end loop over boundaries

//Find number of elements in mesh
unsigned n_element = mesh_pt()->nelement();

// Loop over the elements to set up element-specific
// things that cannot be handled by constructor: Pass pointer to Reynolds
// number
for(unsigned e=0;e<n_element;e++)
{
// Upcast from GeneralisedElement to the present element
ELEMENT* el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(e));
//Set the Reynolds number, etc
el_pt->re_pt() = &Global_Physical_Variables::Re;
} // end loop over elements

// Pin redudant pressure dofs
RefineableNavierStokesEquations<2>::
pin_redundant_nodal_pressures(mesh_pt()->element_pt());

// Now set the first pressure dof in the first element to 0.0
fix_pressure(0,0,0.0);

// Setup equation numbering scheme
cout <<"Number of equations: " << assign_eqn_numbers() << std::endl;

} // end_of_constructor

1.6 Post-processing

The post-processing function is identical to that in the non-adaptive version of the code.

//==start_of_doc_solution=================================================
/// Doc the solution
//========================================================================
template<class ELEMENT>
void RefineableDrivenCavityProblem<ELEMENT>::doc_solution

(DocInfo& doc_info)
{

ofstream some_file;
char filename[100];

// Number of plot points
unsigned npts=5;

// Output solution
sprintf(filename,"%s/soln%i.dat",doc_info.directory().c_str(),

doc_info.number());

Generated by Doxygen

../../driven_cavity/html/index.html#doc


8 Example problem: Adaptive solution of the 2D driven cavity problem

some_file.open(filename);
mesh_pt()->output(some_file,npts);
some_file.close();

} // end_of_doc_solution

1.7 Comments and Exercises

1.7.1 Hanging nodes in problems with vector-valued unknowns

We discussed in an earlier example for a scalar (Poisson) problem how oomph-lib's mesh adaptation rou-
tines create hanging nodes and how the values that are stored at such nodes are automatically constrained to
ensure the inter-element continuity of the solution. The methodology employed for scalar problems is easily gener-
alised to problems with vector-valued unknowns, provided that all unknowns are represented by the same isopara-
metric interpolation between the elements' nodal values. In such problems, the unknown nodal values at the hang-
ing nodes are constrained to be linear combination of the corresponding values at their "master nodes". The list of
"master nodes" and the corresponding "hanging weights" (contained in a HangInfo object) are the same for all
unknowns.

To allow the use spatial adaptivity for elements in which different unknowns are represented by different interpolation
schemes (e.g. in 2D quadrilateral Taylor-Hood elements where the two velocity components are represented by bi-
quadratic interpolation between the values stored at the element's 3x3 nodes, whereas the pressure is represented
by bi-linear interpolation between the pressure values stored at the element's 2x2 corner nodes) oomph-lib
allows the different nodal values to have their own list of "master nodes" and "hanging weights". This is achieved as
follows;

• By default, all nodes are assumed to be non-hanging. This status is indicated by the fact that a Node's
pointer to its HangInfo object, accessible via its member function Node::hanging_pt(), is NULL.

• Mesh adaptation may turn a node into a hanging node. A node's "hanging status" is primarily a geomet-
rical/topological property. If a Node is found to be hanging, oomph-lib's mesh adaptation procedures
create a HangInfo object that stores the list of the hanging node's "master nodes" and their respective
weights. A pointer to the HangInfo object is then passed to the Node. The list of master nodes and
weights, stored in this HangInfo object is then used by the function Node::position() to determine
the Node's (constrained) position.

• Nodes also provide storage for separate pointers to HangInfo objects for each of their nodal values. These
are accessible via the member function Node::hanging_pt(i) which returns the pointer to the Hang←↩

Info object associated with the node's i-th nodal value. By default, these pointers point to the "geometric"
HangInfo object, accessible via the argument-free version of this function. This default behaviour is ap-
propriate for isoparametric elements in which all unknowns are represented by interpolation between the
elements' nodes, using its geometric shape functions as basis functions.

• For elements that use different interpolation schemes for different nodal values (e.g. in Taylor-Hood elements),
the default assignment for the pointers to the HangInfo objects may be over-written. This is task is typically
performed by re-implementing (and thus over-writing) the empty virtual function

RefineableElement::further_setup_hanging_nodes()

for such elements. This function is called automatically during at the end of oomph-lib's mesh adaptation
procedures.

Generated by Doxygen

../../../poisson/two_d_poisson_adapt/html/index.html


1.7 Comments and Exercises 9

1.7.2 Adaptivity for Taylor-Hood elements

1.7.2.1 The issues

In non-adaptive 2D [3D] Taylor-Hood elements, every node stores (at least) two [three] nodal values which represent
the two [three] velocity components. The four corner [eight vertex] nodes store an additional third [fourth] value which
represents the pressure. If the mesh is subjected to non-uniform refinement, some of the mid-side nodes in large
elements also act as corner nodes for adjacent smaller elements, as illustrated in the figure below.

Figure 1.3 An adapted mesh, with nodes storing a pressure value denoted by circles, and velocity nodes
by squares.

The figure illustrates that the "hanging status" of the various degrees of freedom can be become fairly involved. For
instance

• Node 7 is geometrically hanging, with master nodes 6, 8 and 12. It is not a pressure node.

• Node 8 is geometrically non-hanging, but it is a hanging node for the pressure interpolation. Its pressure
master nodes are 6 and 12.

• Node 10 is geometrically hanging, and its geometric master nodes are 6, 8 and 12, while its pressure master
nodes are 6 and 12.

To illustrate that oomph-lib's automatic mesh adaptation procedures are able to deal with these cases, the
figure below shows a "carpet plot" of the pressure distribution, p(x1, x2), obtained from a (strongly under-resolved)
driven-cavity computation on the mesh shown above. The figure illustrates that the hanging node constraints ensure
the inter-element continuity of the pressure throughout the domain, and, in particular, along the "right" boundary of
the largest element.

Generated by Doxygen



10 Example problem: Adaptive solution of the 2D driven cavity problem

Figure 1.4 The under-resolved pressure distribution for the driven cavity problem, using the above mesh
and computed with Taylor-Hood elements.

1.7.2.2 Details of the implementation

To facilitate the book-keeping for such problems, all nodes in the refineable Taylor-Hood elements store three [four]
nodal values, even though, depending on the mesh's refinement pattern some of the pressure values will not be
used. To eliminate the "redundant" pressure degrees of freedom from the problem, we provide the function

NavierStokesEquations<DIM>::pin_redundant_nodal_pressures(...)

which pins the "redundant" pressure degrees of freedom in all elements specified by the input argument (a vector of
pointers to the Navier-Stokes elements). This function must be called after the initial mesh has been created, and
after each mesh adaptation. The function first pins all nodal pressure values, using the function

NavierStokesEquations<DIM>::pin_all_nodal_pressure_dofs()

and then unpins the nodal pressure values at the elements' corner [vertex] nodes, using the function

NavierStokesEquations<DIM>::unpin_proper_nodal_pressure_dofs()

These functions are implemented as empty virtual functions in the NavierStokesEquations<DIM> class
which provides a base class for all Navier-Stokes elements. The empty functions are overwritten for QTaylor←↩

HoodElement<DIM> and remain empty for all other Navier-Stokes elements, therefore they can be called for
any element type.

1.7.3 Adaptivity for Crouzeix-Raviart elements

As discussed in the previous example, oomph-lib's isoparametric 2D [3D] Crouzeix-Raviart elements
employ a piecewise bi- [tri-]linear, globally discontinuous pressure representation. In each element, the pressure is
represented by bi-[tri-]linear basis functions, multiplied by 3 [4] pressure values which are stored in the element's
internal Data. Since the pressure representation is discontinuous, the pressure values do not have to be subjected
to any constraints to ensure inter-element continuity. Each Node stores two [three] velocity degrees of freedom.
Since the velocity representation is isoparametric, the default assignment for the nodal values' HangInfo pointer
is appropriate and no further action is required.

Generated by Doxygen

../../driven_cavity/html/index.html#CR


1.8 Source files for this tutorial 11

1.7.4 Exercises

1. Confirm that a warning message is issued if the function NavierStokesEquations<DIM>::pin_←↩

all_nodal_pressure_dofs() is not called following the mesh adaptation.

2. Investigate how the pressure distribution changes with each adaptation. [Hint: You can call doc_←↩

solution(...) from actions_after_newton_solve() to document the progress of the mesh
adaptation.]

1.8 Source files for this tutorial

• The source files for this tutorial are located in the directory:

demo_drivers/navier_stokes/adaptive_driven_cavity/

• The driver code is:

demo_drivers/navier_stokes/adaptive_driven_cavity/adaptive_driven_←↩

cavity.cc

1.9 PDF file

A pdf version of this document is available.

Generated by Doxygen

../../../../demo_drivers/navier_stokes/adaptive_driven_cavity/adaptive_driven_cavity.cc
../../../../demo_drivers/navier_stokes/adaptive_driven_cavity/adaptive_driven_cavity.cc
../../../../demo_drivers/navier_stokes/adaptive_driven_cavity/adaptive_driven_cavity.cc

	1 Example problem: Adaptive solution of the 2D driven cavity problem
	1.1 The example problem
	1.1.1 Solution with Crouzeix-Raviart elements
	1.1.2 Solution with Taylor-Hood elements

	1.2 Global parameters and functions
	1.3 The driver code
	1.4 The problem class
	1.5 The problem constructor
	1.6 Post-processing
	1.7 Comments and Exercises
	1.7.1 Hanging nodes in problems with vector-valued unknowns
	1.7.2 Adaptivity for Taylor-Hood elements
	1.7.2.1 The issues
	1.7.2.2 Details of the implementation

	1.7.3 Adaptivity for Crouzeix-Raviart elements
	1.7.4 Exercises

	1.8 Source files for this tutorial
	1.9 PDF file


