
Chapter 1

Parallel processing

oomph-lib is designed so that, provided the library is compiled with MPI support, discussed below in Basic
parallel usage, many of the most computationally-expensive phases of a typical computation are automatically
performed in parallel. Examples of "automatically parallelised" tasks include

• The assembly of the Jacobian matrix and the residual vector in Newton's method.

• Error estimation.

• The solution of the linear systems within the Newton iteration, and any preconditioning operations performed
within oomph-lib's block-preconditioning framework which relies heavily on the library's
distributed linear algebra infrastructure.

The only parallel task that requires user intervention is the distribution of a problem over multiple processors so
that each processor stores a subset of the elements. For straightforward problems, a single call to Problem←↩

::distribute() suffices. Furthermore, the majority of oomph-lib's multi-physics helper functions (e.g.
the automatic setup of the fluid load on solid elements in FSI problems; the determination of "source elements" in
multi-field problems; etc) can be used in distributed problems. For less-straightforward problems, the user may have
to intervene in the distribution process and/or be aware of the consequences of the distribution. Hence, the section
Distribution of problems by domain decomposition provides an overview of the underlying design used for problem
distribution within oomph-lib. A number of demo driver codes for distributed problems are
provided and any additional issues are discussed in the accompanying tutorials.

1.1 Basic parallel usage

1.1.1 How to build/install oomph-lib with MPI support

• To compile oomph-lib with MPI support you must specify the configure flag

--enable-MPI

../../../mpi/block_preconditioners/html/index.html
../../../mpi/distributed_linear_algebra_infrastructure/html/index.html
../../../example_code_list/html/index.html#parallel

2 Parallel processing

If you use oomph-lib's autogen.sh script to build the library you should add this line to the
config/configure_options/current file. You should also ensure that appropriate parallel
compilers are specified by the CXX, CC, F77 and LD flags. For instance, if you use LAM, you should use
CXX=mpic++, CC=mpicc, F77=mpif77 and LD=mpif77.

• When oomph-lib is built with MPI support, the macro OOMPH_HAS_MPI is defined. It is used to isolate
parallel sections of code to ensure that the library can be used in serial and parallel: e.g.

[...]

#ifdef OOMPH_HAS_MPI

std::cout << "This code has been compiled with mpi support \n "
<< "and is running on " << Communicator_pt->nproc()
<< " processors. " << std::endl;

#else

std::cout << "This code has been compiled without mpi support"
<< std::endl;

#endif

[...]

1.1.2 How to run a driver code in parallel

• MPI must be initialised in every driver code that is to be run in parallel, which means that the commands
MPI_Helpers::init(...) and MPI_Helpers::finalize() must be added to the beginning and
end of the main(...) function, respectively

int main(int argc, char **argv)
{

// Initialise oomph-lib’s MPI
MPI_Helpers::init(argc,argv);

// Normal "serial" code
[...]

// Shut down oomph-lib’s MPI
MPI_Helpers::finalize();

}

Running the code on multiple processors should immediately lead to a speedup, although this depends on
the specific problem. In most applications, the most computationally-expensive tasks are the setup of the Ja-
cobian matrix and the solution of the linear systems. When a driver code is run on multiple processors, each
processor assembles contributions to the Jacobian matrix from a different subset of the elements, dividing
the work of the assembly between processors. In our experience, the assembly of the Jacobian matrix tends
to scale very well with the number of processors. The parallel performance of the (third-party) linear solvers
available from within oomph-lib varies greatly and their performance is also strongly dependent on the
underlying hardware, e.g. the speed of your machine's interconnects, etc.

Generated by Doxygen

http://www.lam-mpi.org/

1.1 Basic parallel usage 3

• The MPI header file mpi.h is included in oomph-lib's generic header, so it is not necessary to include
it in the driver code. The functions MPI_Helpers::init(...) and MPI_Helpers::finalize() call
their MPI counterparts, MPI_Init(...) and MPI_Finalize(), which must not be called again. Note also
that the main(...) function must take arguments which are then passed into the MPI_Helpers::init(...)
function.

• The command used to run a parallel job depends on your particular MPI installation. If you use OpenMPI, for
example, the executable parallel_executable is run on, say, four processors by issuing the command

mpirun -np 4 ./parallel_executable

1.1.3 oomph-lib's parallel linear solvers

• oomph-lib's default linear solver is SuperLUSolver. This is a wrapper to the direct linear solvers from
the SuperLU / SuperLU_DIST projects. If oomph-lib is built with MPI support and the executable
is run on multiple processors, SuperLU_DIST will be used by default, otherwise SuperLU is used.

• Of oomph-lib's own iterative linear solvers, only CG is parallelised. We recommend using
oomph-lib's wrapper to the parallel Krylov subspace solvers from the Trilinos library (see the
oomph-lib installation page for details on how to install this) instead. The interfaces are identical
to those used to call these solvers in serial; see the linear solver tutorial for details.

• oomph-lib's block preconditioning framework is fully parallelised and can be used in the same way as in
a serial code.

1.1.4 How to include parallel demo codes into the self-tests

• The configure flag -with-mpi-self-tests includes oomph-lib's parallel demo driver codes into
the self-tests executed when make check is run. The self-tests require the executable to be run on two
processors and the command that spawns a two-processor parallel job on the target machine must be
specified as an argument to the configure flag. For example, under LAM

--with-mpi-self-tests="mpirun -np 2"

Some self-tests are performed with a greater number of processors. To perform these tests as part of
the make test procedure, add the configure flag -with-mpi-self-tests-variablenp to the
configure options. Its argument has to specify how to spawn an mpi job on an arbitrary number of processors,
using the placeholder OOMPHNP for the number of processors. E.g.

Generated by Doxygen

http://www.open-mpi.org/
http://crd.lbl.gov/~xiaoye/SuperLU
http://trilinos.sandia.gov/
../../../the_distribution/html/index.html#external_dist
../../../the_distribution/html/index.html#external_dist
../../../linear_solvers/html/index.html
http://www.lam-mpi.org/

4 Parallel processing

--with-mpi-self-tests-variablenp="mpirun -np OOMPHNP"

It is easiest to add the appropriate lines to the config/configure_options/current file before
building/installing oomph-lib with autogen.sh.

NOTE: When using LAM, make sure your MPI demons are started before running the parallel self-tests, e.g.
by using the lamboot command, otherwise the self-tests will fail.

1.2 Distribution of problems by domain decomposition

By default each processor stores the entire Problem object, which means that all data is available on all pro-
cessors. As a result the size of the problem is limited by the smallest amount of memory available on any of the
processors. In addition, the mesh adaptation does not benefit from parallel processing because each processor
must adapt its own copy of the entire mesh, even though it operates on a subset of the elements when assembling
the Jacobian matrix.

To address this problem, oomph-lib's domain decomposition procedures allow a Problem to be distributed
over multiple processors so that each processor holds a fraction of the Problem's elements, which can lead to
substantial reductions in memory usage per processor and allows the mesh adaptation to be performed in parallel.

1.2.1 Basic usage: How to distribute a simple problem

• In most cases the problem distribution is extremely straightforward. Given an existing serial driver code,
modified by the addition of calls to MPI_Helpers::init(...) and MPI_Helpers::finalize(), the
function

Problem::distribute()

can be called at any point after the Problem has been constructed and equation numbers have been
assigned (i.e. at a point at which Problem::newton_solve() could be called), but before any
non-uniform mesh refinement has taken place. Equation numbering is required because the automatic
distribution procedure uses the global equation numbering scheme to identify interactions between elements
and attempts to store strongly-coupled elements on the same processor.

After the call to Problem::distribute() each processor holds a sub-set of the Problem's
elements: those elements whose contribution to the Jacobian are assembled by the processor, and addi-
tional "halo" elements that are retained to facilitate the subsequent mesh adaptation. (Halo elements are
discussed in the Overview of the implementation of Problem distribution below). We note that the meshes'
boundary lookup schemes are updated during the distribution process so that Mesh::nboundary_←↩

element(b) returns the number of elements on the processor that are adjacent to boundary b. Hence,
functions that were written (in serial) to update time-dependent boundary conditions on a mesh's boundary
nodes, say, continue to work in parallel without requiring any modifications.

• Now that each processor holds a subset of the Problem's elements, it is sensible to modify the post-
processing routines such that output files are labelled by the processor number:

Generated by Doxygen

1.2 Distribution of problems by domain decomposition 5

//==start_of_doc_solution===
/// Doc the solution
//==
template<class ELEMENT>
void RefineableDrivenCavityProblem<ELEMENT>::doc_solution(DocInfo& doc_info)
{

ofstream some_file;
char filename[100];

// Number of plot points
unsigned npts=5;

// Get current process rank
int my_rank=this->communicator_pt()->my_rank();

// Output solution
sprintf(filename,"%s/soln%i_on_proc%i.dat",doc_info.directory().c_str(),

doc_info.number(),my_rank);
some_file.open(filename);
mesh_pt()->output(some_file,npts);
some_file.close();

} // end_of_doc_solution

Without such a modification multiple processors will attempt to write to the same file, leading to incomplete
output if/when the file produced by one processor is overwritten by another. By default, oomph-lib's
mesh-based output functions do not include output from halo elements; this can be re-enabled or disabled
by calls to

Mesh::enable_output_of_halo_elements()

or

Mesh::disable_output_of halo_elements()

respectively.

• Other, equally-straightforward modifications to existing driver codes tend to be required if the serial version
of the code contains explicit references to individual elements or nodes, e.g. pinning a pressure value in a
Navier–Stokes computation with enclosed boundaries. In such cases, it is important to remember that, once
the problem is distributed, (i) not every processor has direct access to a specific element (or node), and (ii) the
pointer to the "first" element in a mesh (say) points to a different element on each processor. The particular
example of pinning a pressure degree of freedom in a Navier–Stokes problem is discussed in detail in the
adaptive driven cavity tutorial.

1.2.2 Overview of the implementation of Problem distribution

The main task of the Problem::distribute() function is to distribute the Problem's global mesh (possibly
comprising multiple sub-meshes) amongst the processors so that (a) the storage requirements on each processor
are reduced; (b) during the mesh adaptation each processor only acts on a fraction of the overall mesh; while ensur-
ing that (c) communication between processors required to synchronise any shared data structures is minimised.

The figure below shows a conceptual sketch of the parallelisation strategy adopted. For simplicity, we shall restrict
the discussion to the 2D case and ignore various complications that arise with more complicated mesh partitionings.

The initial distribution of a problem proceeds in two stages:

Generated by Doxygen

../../adaptive_driven_cavity/html/index.html

6 Parallel processing

• Initial refinement and partitioning

Each processor constructs the same Problem object, using a (typically very coarse) initial mesh; in
the figure below, the mesh contains a single four-node quad. Repeated calls to Problem::refine←↩

_uniformly() should be made to increase the number of elements sufficiently for a sensible mesh
partitioning — for example, there should be at least as many elements as processors. By default, METIS
is used to associate each element with a unique processor. Alternatively, user-defined distributions may
be specified via a vector that contains the processor number to be associated with each element. Nodes
located in the interior of a processor's patch of elements are associated with that processor; nodes shared
by elements associated with different processors are associated with the highest-numbered processor.

• Identification of halo[ed] nodes/elements and pruning

The elements and nodes required by each processor must now be determined. Each processor retains
its own elements: those elements associated with the processor by the partitioning process. In addition,
each processor retains a single layer of elements adjacent to its own elements, and their nodes. Nodes
that lie directly on the boundary between this layer and the processor's own elements are shared be-
tween processors and are associated with the highest-numbered processor, as explained above. These
additional elements/nodes that are retained but not associated with the processor are termed halo''
elements/nodes. Conversely, objects are termedhaloed'' if they are associated with
the processor, but they have halo counterparts on other processors. [It is possible to request that all elements
in a mesh are retained as halo elements. This is useful in certain free-boundary problems; see the section
Distributing problems involving meshes with algebraic node updates below for details].

At this stage of the process, each processor has access to the entire mesh and it is, therefore, possi-
ble to establish a consistent numbering scheme for halo[ed] elements/nodes. Once this information has been
set up, any superfluous nodes and elements are deleted and the mesh's boundary lookup-schemes (required
to identify the nodes and elements located adjacent to domain boundaries) and neighbour information for
adaptive refinement are re-generated. Finally, each processor independently assigns equation numbers
for its associated (non-halo) elements and nodes; the equation numbers are then synchronised between
processors.

Generated by Doxygen

http://www-users.cs.umn.edu/~karypis/metis/

1.2 Distribution of problems by domain decomposition 7

(4) Parallel mesh adaptation

(5) Pruning of superfluous halo[ed] nodes/elements

proc 1 proc 2 proc 3proc 0

(3) Identification of halo[ed] nodes/elements and pruning

p
ar

al
le

l
se

ri
al

(1) Initial uniform refinement

(2) Partitioning (METIS)

Figure 1.1 Sketch illustrating the phases of the parallel mesh adaptation procedure for a problem that is
distributed over four processors. The columns illustrate the evolution of the mesh on each of the four

processors. The colours of the objects indicate which processor is associated with them.

Aside from the initial refinement process, the functionality described above is implemented in a single function,
Problem::distribute(). Following its execution on all processors, each processor can assemble its con-
tribution to the distributed Jacobian matrix and residual vector, required by oomph-lib's parallel linear solvers,
using only to locally stored non-halo objects. Once the Newton correction to the unknowns has been computed,
each processor updates the unknowns associated with its elements and nodes, before MPI-based communication
is employed to update the unknowns stored at the processors' halo nodes.

Generated by Doxygen

8 Parallel processing

After a problem has been distributed, further mesh refinement can be performed in parallel using the existing
mesh adaptation procedures on the (partial) meshes held on the different processors. For spatially non-uniform
refinement, each haloed element communicates whether or not it is to be refined to its halo counterparts before
the adaptation takes place. Any nodes created during the refinement are associated with a unique processor,
using the rules described above, and halo[ed] nodes are identified and added to the appropriate lookup schemes.
These steps are performed automatically when Problem::refine_uniformly() or any of the other mesh
adaptation routines within oomph-lib are executed.

Optional pruning of superfluous halo[ed] nodes and elements

The parallel efficiency of the distributed mesh adaptation (in terms of the memory required to hold the partial
meshes, and in terms of the CPU time required for their adaptation) is limited by the fact that each processor must
adapt not only the Nin charge elements it is in charge of, but also its Nhalo halo elements. We define the efficiency
of the problem distribution as

edist =
Nin charge

Nhalo +Nin charge
≤ 1,

where the equality could only be achieved in the absence of any halo elements.

When the mesh is first distributed, the halo layer has a depth of one element, but repeated mesh refinement can
make the halo layers (the original halo elements and their sons) much thicker than a single-element layer. Thus, to
a large extent, the efficiency is determined during the initial problem distribution and at that stage of the process
it can only be improved by (i) increasing the number of non-distributed initial mesh refinements; (ii) reducing the
number of processors. Since both options reduce the parallelism they are not desirable. It is possible, however, to
improve the parallel efficiency by pruning superfluous halo[ed] elements after each mesh refinement by calling the
function

Problem::prune_halo_elements_and_nodes()

as illustrated in the figure. If this is done after every mesh adaptation edist increases significantly as the refinement
proceeds. However, the pruning of halo[ed] nodes and elements makes the refinement irreversible and the mesh(es)
involved can no longer be unrefined below the previous highest level of uniform refinement.

1.2.3 Customising the distribution

The procedures described above are completely sufficient for straightforward problems, e.g. a single mesh
containing single-physics elements. For less-straightforward problems, e.g. those that involve interactions between
multiple meshes, the interactions must be set up both before and after the distribution. The functions

Problem::actions_before_distribute()

and

Problem::actions_after_distribute()

can be used to perform any additional commands required to complete the setup of the problem after distribution.
In many cases, these functions will contain the same commands as those required in the equivalent Problem←↩

::actions_before_adapt() and Problem::actions_after_adapt() functions used during mesh
adaptation.

Generated by Doxygen

1.2 Distribution of problems by domain decomposition 9

1.2.3.1 Distributing problems involving FaceElements

FaceElements are typically used to apply Neumann/traction-type boundary conditions; see the tutorials that dis-
cuss the application of such boundary conditions in Poisson or Navier-Stokes equations. Since the Face←↩

Elements that apply the Neumann boundary conditions are attached to "bulk" elements that may disappear during
mesh adaptation, we generally recommend to store the (pointers to the) FaceElements in a separate mesh, and
to use the Problem::actions_before_adapt() and Problem::actions_after_adapt() func-
tions to detach and re-attach the FaceElements to/from the bulk elements before and after the mesh adaptation.

The same issues arise during the problem distribution: A FaceElement that was created before the problem was
distributed may have been attached to a bulk element that is deleted when the distribution is performed, resulting in
obvious (and disastrous) consequences. We therefore recommend using the functions

Problem::actions_before_distribute()

and

Problem::actions_after_distribute()

to detach and re-attach any FaceElements before and after the problem distribution. In this context it is impor-
tant to note that:

1. The FaceElements should be available before Problem::distribute() is called to allow the
load-balancing routines to take their presence into account.

2. FaceElements that are attached to halo (bulk-)elements become halo-elements themselves.

Further details are provided in another tutorial which explains the modifications to the serial driver code
required to distribute a Poisson problem with Neumann boundary conditions.

1.2.3.2 Distributing multi-domain problems

Multi-domain problems involve interactions between PDEs that are defined in different domains, such as fluid-
structure interaction problems. Within oomph-lib, multi-domain problems typically involve elements, de-
rived from the ElementWithExternalElement class, that store pointers to any "external" elements
that take part in the interaction. These "external" elements are determined by helper functions such as F←↩

SI_functions::setup_fluid_load_info_for_solid_elements(...) or Multi_domain_←↩

functions::setup_multi_domain_interactions(...). The appropriate helper functions must be
called in the function Problem::actions_after_distribute() to ensure that the interactions are
correctly set up once the problem has been distributed.

The helper function Multi_domain_functions::locate_external_elements() has been written to
work even after a problem has been distributed and uses the following algorithm:

Generated by Doxygen

../../../poisson/two_d_poisson_flux_bc/html/index.html
../../../navier_stokes/rayleigh_traction_channel/html/index.html
../../two_d_poisson_flux_bc_adapt/html/index.html

10 Parallel processing

1. Loop over all (non-halo) ElementWithExternalElements and try to locate the "external" elements
(e.g. fluid elements adjacent to an elastic wall in an fluid-structure interaction problem) on the current pro-
cessor. If the required "external" element is found locally, the ElementWithExternalElement stores
a pointer to it.

2. If the "external" element cannot be found locally, MPI-based communication is employed to find the "external"
element on one of the other processors. Once found, a halo-copy of the "external" element (and its nodes) is
made on the current processor and a pointer to the halo-element is stored. These "external" halo elements
and nodes are stored in the appropriate mesh, i.e. in an FSI problem, the "external" fluid elements are added
to the fluid mesh.

"External" halo[ed] elements are automatically included in any halo/haloed synchronisation operations performed
when assigning equation numbers, or updating unknowns during the Newton iteration, etc.

The procedure discussed above has the following important consequence:

• When an "external" halo element is created we also automatically create halo-copies of those of its nodes
that do not already exist on the current processor. Such nodes are stored as "external" halo nodes and
they are automatically synchronised with their non-halo counterparts on other processors. However, syn-
chronisation of nodes does not (and cannot) include the specification of auxiliary node update functions
(such as the function FSI_functions::apply_no_slip_on_moving_wall(...) which automat-
ically applies the no-slip condition on moving fluid-solid interfaces). Such functions should therefore be
re-assigned to the appropriate nodes after FSI_functions::setup_fluid_load_info_for_←↩

solid_elements() has been called. This is exactly equivalent to the sequence of steps required follow-
ing an adaptive mesh refinement; see e.g. the tutorial discussing the adaptive solution
of the collapsible channel problem for a more detailed discussion of this issue. We note that
"external" halo-nodes are added to the mesh's boundary lookup schemes, so the specification of auxiliary
node update functions for all nodes on a given mesh boundary does not require any further modification to
the serial code.

1.2.3.3 Distributing problems involving meshes with algebraic node updates

oomph-lib provides a variety of algebraic node-update methods. These allow the fast and sparse update of the
nodal positions in response to changes in the domain boundaries. The shape and position of such boundaries is
typically represented by one or more GeomObjects. If the motion of the boundary is prescribed, (as in the case
of the flow inside an oscillating ellipse, say) no modifications are required when the meshes are
used in a distributed problem.

In order to minimise communication, the design decision was taken that any GeomObjects defining the position of
domain boundaries must be available on all processors after the problem is distributed. Thus, if the GeomObject
is actually a MeshAsGeomObject, a compound GeomObject formed from a mesh of FiniteElements,
then all the elements in the mesh, or all elements required to construct the mesh, must be retained as halo
elements on every processor. This leads to a slight increase in the overall storage requirements (because none
of the elements involved in the interaction are deleted when the problem is distributed) but it means that the entire
GeomObject remains accessible to the fluid mesh without invoking MPI communications. Two functions can be
used to specify that elements must be retained:

Mesh::keep_all_elements_as_halos()

Generated by Doxygen

../../../interaction/fsi_collapsible_channel_adapt/html/index.html#before_and_after
../../../interaction/fsi_collapsible_channel_adapt/html/index.html#before_and_after
../../../navier_stokes/osc_ellipse/html/index.html

1.3 Further MPI Details 11

keeps every element in the Mesh available to every processor, and

GeneralisedElement::must_be_kept_as_halo()

can be called for a particular element to ensure that it is kept available to every processor.

We stress that the increase in storage requirements due to the retention of these elements is minimal because
the elements are only located along the (lower-dimensional) boundaries of the domain. For instance, in the
collapsible channel problem the 1D mesh of beam elements bounds the 2D mesh of fluid elements; in
Turek and Hron's FSI benchmark problem, the 2D fluid domain is bounded by a 1D mesh of FSI←↩

SolidTractionElements, and so on.

Examples of the implementation of these ideas are given for the flow past an elastic leaflet and
Turek and Hron's FSI benchmark problem .

1.3 Further MPI Details

• oomph-lib mirrors the MPI C bindings with the methods MPI_Helpers::init(...) and MPI_←↩

Helpers::finalize(); they call the methods MPI_Init(...) and MPI_Finalize() respectively.
In addition, these methods automatically create (and destroy) a new instance of MPI_Comm with the same set
of processes as MPI_COMM_WORLD but with a different communication context. This MPI_Comm instance
is accessible through MPI_Helpers::Communicator_pt which returns a pointer to an Oomph←↩

Communicator object.

• An OomphCommunicator is oomph-lib's object oriented wrapper to an MPI_Comm.

• Under normal operation, a user does not need to specify the OomphCommunicator for any object – this
is all handled automatically by oomph-lib. For example, on construction a Problem will use the MPI←↩

_Helpers communicator; a LinearSolver will use the corresponding Problem communicator; and a
Preconditioner will use the corresponding IterativeLinearSolver communicator.

1.4 Trouble-shooting and debugging

1.4.1 Debugging and documenting the distribution

Once a problem has been distributed, the function

Problem::check_halo_schemes()

can be called to check that the halo lookup schemes for each mesh are set up correctly.

Details about the mesh distribution can be generated by calling

Mesh::doc_mesh_distribution(DocInfo& doc_info)

which outputs the elements, nodes, halo(ed) elements, halo(ed) nodes, mesh, boundary elements and boundary
nodes on each processor. This routine is automatically called when Problem::distribute() is called with a
DocInfo object whose Doc_flag is set to true (the default behaviour).

Generated by Doxygen

../../../interaction/fsi_collapsible_channel_algebraic/html/index.html
../../../interaction/turek_flag/html/index.html
../../fsi_channel_with_leaflet/html/index.html
../../turek_flag/html/index.html

12 Parallel processing

1.4.2 Debugging parallel code

Parallel code can obviously fail in many more ways than a code that runs on a single processor. Here is a procedure
that allows basic parallel debugging without requiring access to expensive commercial tools such as totalview, say.
(The instructions below assume that you use LAM as your MPI installation; they can probably be modified to work
with other versions of MPI, too).

Let's assume you use gdb as your debugger. To debug a serial code with gdb you would load the executable
a.out into the debugger using the command

gdb ./a.out

on the command line. Once inside gdb, you run the code by typing "run". If the code crashes, typing "where" will
tell you in which line of the code the crash occurred, and it will also provide a traceback of the function calls that got
you to this point.

To do this in parallel, we have to run each (parallel) instance of the code within its own gdb session. To this, create
the following three files:

• A shell script mpidbg that must be executable, which contains:

mpirun $1 $2 -x DISPLAY rungdb.sh -x cmds.gdb

• The executable file rungdb.sh must be in the same directory as mpidbg and contain the following

echo "Running GDB on node ‘hostname‘"
echo $DISPLAY
xterm -geometry 200x40 -e gdb $*
exit 0

• Finally the cmds.gdb file should also be in the same directory and must contain the run command (so that
all processors start their gdb session simultaneously), and may also include other commands such as set
args command-line-arguments, and so on.

Then, to run the debugger in parallel on 3 processors for the executable a.out, the command would be

mpidbg -np 3 ./a.out

Once the command is issued, an xterm window will be opened for each processor, and if a crash occurs on any
processor, the usual gdb commands (back, up, down, quit and so on) may be used within any of the xterm
sessions where a crash has taken place.

1.5 PDF file

A pdf version of this document is available.

Generated by Doxygen

http://www.lam-mpi.org/
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/

	1 Parallel processing
	1.1 Basic parallel usage
	1.1.1 How to build/install oomph-lib with MPI support
	1.1.2 How to run a driver code in parallel
	1.1.3 oomph-lib's parallel linear solvers
	1.1.4 How to include parallel demo codes into the self-tests

	1.2 Distribution of problems by domain decomposition
	1.2.1 Basic usage: How to distribute a simple problem
	1.2.2 Overview of the implementation of Problem distribution
	1.2.3 Customising the distribution
	1.2.3.1 Distributing problems involving FaceElements
	1.2.3.2 Distributing multi-domain problems
	1.2.3.3 Distributing problems involving meshes with algebraic node updates

	1.3 Further MPI Details
	1.4 Trouble-shooting and debugging
	1.4.1 Debugging and documenting the distribution
	1.4.2 Debugging parallel code

	1.5 PDF file

