
Chapter 1

Distributed Linear Algebra Infrastructure

In this document we provide an overview of oomph-lib's distributed linear algebra framework, discussing its
design and key functionality. The aim of this framework is to facilitate the parallel (distributed) execution of linear
algebra type operations with little (or no) user intervention. This requires all linear algebra data and computations
to be distributed over all available processes.

We begin by defining the OomphCommunicator, a class that is fundamental to distributed computing in
oomph-lib. Next we discuss the class LinearAlgebraDistribution which specifies the distribution
of the data and computations over the available processes. In Sections DoubleVector, CRDoubleMatrix and
DistributedLinearAlgebraObject we discuss oomph-lib's distributed linear algebra objects including the key
containers (matrices and vectors) and operators (solvers and preconditioners). Finally, we demonstrate how the
distributed linear algebra framework is typically used in practice.

The primary aim of this document is to provide an overview of the design and functionality of distributed linear
algebra capabilities in oomph-lib, and hence we do not discuss every method of every class; we refer the reader
to the class documentation for a complete specification.

1.1 OomphCommunicator

Oomph-lib employs MPI for distributed memory parallelisation. Fundamental to MPI is the communicator (M←↩

PI_Comm) which determines which processes are involved in a parallel computation. Although oomph-lib is
implemented in C++, the C MPI bindings are utilised. Oomph-lib provides the class OomphCommunicator as
an object-oriented wrapper for a MPI_Comm.

Calling MPI_Helpers::init(argc,argv) is equivalent to calling MPI_Init(argc,argv). It initialises
MPI (i.e. calls MPI_Init(argc,argv)) and creates oomph-lib's global communicator:

//===start_of_main===
/// Driver code for generic mpi stuff
//===
int main(int argc, char* argv[])
{

// Initialise MPI
MPI_Helpers::init(argc,argv);

The newly created communicator is available via a MPI_Helpers class static method:

// Get the global oomph-lib communicator
const OomphCommunicator* const comm_pt = MPI_Helpers::communicator_pt();

2 Distributed Linear Algebra Infrastructure

and is equivalent to the MPI_COMM_WORLD communicator in that it represents all the processes that oomph-lib
knows about. By default, this communicator contains exactly the same set of processes as MPI_COMM_WORLD.

The OomphCommunicator provides a number of access functions to communicator data including the rank of
the process and the number of the processes:

// Get rank and total number of processors.
unsigned my_rank = comm_pt->my_rank();
unsigned nproc = comm_pt->nproc();

// Tell us who you are...
oomph_info << "I’m rank " << my_rank << " on a total of "

<< nproc << " processors" << std::endl;

1.2 LinearAlgebraDistribution

Distributed memory parallelisation requires data and computations to be distributed over the available processes
in some way. In this document we are solely interested in distributed linear algebra. We choose to distribute
the linear algebra objects row-wise, and constrain the distribution such that each process is associated with a
single contiguous set of rows. The class LinearAlgebraDistribution allows the specification of such a
distribution.

The distribution is defined by two integers defining the first global row and the number of local rows associated with
a process. This data is sufficient to allow a mapping between a global row number and a local row number on a
particular process.

To construct a LinearAlgebraDistribution in which 100 rows are uniformly distributed across the set of
processes specified by comm_pt we write:

// Create a uniformly distributed LinearAlgebraDistribution
// 100 global rows are uniformly distributed accross the processes of
// comm_pt
unsigned nrow_global = 100;
LinearAlgebraDistribution distributed_distribution(comm_pt,

nrow_global);

// Show us how many rows this processor holds
oomph_info << "distributed distribution: first_row and nrow_local: "

<< distributed_distribution.first_row() << " "
<< distributed_distribution.nrow_local()
<< std::endl;

In this example, if run on four processes, the first 25 rows are associated with process 0, the next 25 rows are on
process 1 and so on. In general, in a uniform distribution of nr global rows over np processes the first row on
process p = 0, 1, . . . , (np − 1) is bpnr

np
c. It is also possible the specify alternative user defined distributions; see

the class documentation for details.

An optional third (bool) argument (default: true) in the constructor indicates that we require a distributed linear
algebra distribution. However, on some occasions we may want to replicate all rows of a linear algebra object on all
processes. This is achieved by simply making the third argument false (non-distributed):

Generated by Doxygen

1.3 DoubleVector 3

// Construct an empty distribution object (does not specify a distribution)
LinearAlgebraDistribution locally_replicated_distribution;

// Build a locally replicated distribution such that every row is available
// on every process
bool distributed=false;
locally_replicated_distribution.build(comm_pt,nrow_global,distributed);

// Show us how many rows this processor holds
oomph_info << "locally replicated distribution: first_row and nrow_local: "

<< locally_replicated_distribution.first_row() << " "
<< locally_replicated_distribution.nrow_local()
<< std::endl;

This example illustrates two other features of LinearAlgebraDistribution. Firstly, the default constructor
creates an empty distribution, and secondly for every (non-default) constructor there is an equivalent build(...)
method to "re-construct" the object.

The state of the object is accessible through a range of methods.

// Get the number of local rows on this process
unsigned nrow_local = distributed_distribution.nrow_local();

// Get the first row on this process
unsigned first_row = distributed_distribution.first_row();

// Get the number of global rows
nrow_global = distributed_distribution.nrow();

// Is this distributed (true) or locally replicated (false)
distributed = distributed_distribution.distributed();

// Does this object specify a distribution
bool built = distributed_distribution.built();

The built() method indicates if the object specifies a distribution, or is empty.

1.3 DoubleVector

The simplest distributed linear algebra object is DoubleVector, a distributed vector of doubles developed
specifically for linear algebra (It differs from a Vector<double> which simply provides a container for doubles
). For example, the following command constructs a DoubleVector with a uniform distribution (specified by the
distributed LinearAlgebraDistribution defined in the previous section) and unit elements:

// Construct a uniformly distributed DoubleVector with unit elements
DoubleVector my_vector(distributed_distribution,1.0);

To access the vector elements the operator[] is implemented. For example to increment every element by one:

// Increment every element of my_vector on this process by 1
nrow_local = my_vector.distribution_pt()->nrow_local();
for (unsigned i = 0; i < nrow_local; i++)
{
my_vector[i]+=1.0;
}

Generated by Doxygen

4 Distributed Linear Algebra Infrastructure

It is the oomph-lib convention that the data in DoubleVector (and all other distributed linear algebra object)
is accessed using local indices. The following loop documents the local row number, the global row number, and
the value of the elements on each process:

// Document elements on this process in my_vector
nrow_local = my_vector.distribution_pt()->nrow_local();
first_row = my_vector.distribution_pt()->first_row();
for (unsigned i = 0; i < nrow_local; i++)
{
oomph_info << "local row " << i

<< " is global row " << first_row+i
<< " and has value " << my_vector[i] << std::endl;

}

To change the distribution of a DoubleVector while retaining the data, we provide the redistribute(...)
method. For example to change my_vector from uniformly distributed to locally replicated:

// Redistribute my_vector such that it is locally replicated on all processes
my_vector.redistribute(&locally_replicated_distribution);

Just like the LinearAlgebraDistribution, we provide build() methods that mirror the behaviour of all
non-default constructors. For example to revert my_vector to a uniform distribution with unit elements:

// (Re)build my_vector such that it is uniformly distributed over all
// processes
my_vector.build(distributed_distribution,1.0);

It is important to differentiate between build(...) and redistribute(...); calling build(...) deletes the existing
data, effectively re-constructing the object, whereas redistribute(...) retains the vector's data.

Like the LinearAlgebraDistribution, a DoubleVector need not contain any data. To generate an
object in this state, we could instantiate an object using the default constructor or call the clear() method:

// Construct an empty DoubleVector
DoubleVector another_vector;

// Clear all data from an existing DoubleVector
my_vector.clear();

Again the built() method returns the state of the object and indicates if it contains any data.

1.4 CRDoubleMatrix

CRDoubleMatrix is the only distributed matrix in oomph-lib. It employs sparse compressed row storage to
store double coefficients.

A CRDoubleMatrix has three fundamental states:

• A CRDoubleMatrix can have no distribution or coefficients in which case my_matrix->distribution←↩

_built() and my_matrix->built() are both false.

Generated by Doxygen

1.4 CRDoubleMatrix 5

• A (built) distribution but no coefficients in which case my_matrix->distribution_built() is true
but my_matrix->built() is still false.

• A (built) distribution and coefficients in which case my_matrix->distribution_built() and my←↩

_matrix->built() are both true.

For example, to construct an empty matrix we call:

// Construct an empty CRDoubleMatrix
CRDoubleMatrix my_matrix;

To specify the distribution as defined by the LinearAlgebraDistribution distributed_←↩

distribution we write:

// Specify that the rows be uniformly distributed
my_matrix.build(&distributed_distribution);

The distribution has now been specified but the coefficients have not. Like the DoubleVector, rows are indexed
locally and hence the coefficients rows must be indexed locally. For example, to populate my_matrix as a square
identity matrix, we write:

// Vector of coefficient of value 1.0
Vector<double> values(nrow_local,1.0);

// Column indices corresponding to values
Vector<int> column_indices(nrow_local);

// Index of vectors values and column_indices where the i-th row starts
// (each row contains one coefficient)
Vector<int> row_start(nrow_local+1);

// populate column_indices and row_start
for (unsigned i = 0; i < nrow_local; ++i)
{
column_indices[i]=first_row+nrow_local;
row_start[i]=i;
}
row_start[nrow_local]=nrow_local;

// Build the (square) matrix
unsigned ncol = nrow_global;
my_matrix.build(ncol,values,column_indices,row_start);

We note that the column indices are global because only the rows are distributed. The assembly of a CRDouble←↩

Matrix is now complete.

We constructed the matrix in two stages by first specifying the distribution and then specifying the coefficients.
However it is possible to perform this operation in just one step, by using the appropriate constructor or build(...)
method, for example:

CRDoubleMatrix my_matrix2(&distributed_distribution,ncol,values,
column_indices,row_start);

Generated by Doxygen

6 Distributed Linear Algebra Infrastructure

1.5 DistributedLinearAlgebraObject

In this section we introduce the class DistributedLinearAlgebraObject, a base class for all distributed
linear algebra objects. This class encapsulates a LinearAlgebraDistribution, provides (protected) ac-
cess to derived classes to update (build_distribution(...)) and clear (clear()) the stored distribution.
Secondly, it provides methods to simplify access to commonly used LinearAlgebraDistribution data. For
example, because a CRDoubleMatrix is a DistributedLinearAlgebraObject,

// Get the first (global) row of my_matrix on this process
first_row = my_matrix2.distribution_pt()->first_row();

can be replaced with

// Get the first (global) row of my_matrix on this process
first_row = my_matrix2.first_row();

DistributedLinearAlgebraObjects can be divided into two types: containers and operators. We have
already reviewed the containers DoubleVector and CRDoubleMatrix. A wide range of operator classes
have been implemented in oomph-lib to operate on these containers. In particular, all LinearSolvers,
IterativeLinearSolvers and Preconditioners (discussed in the Linear Solvers Tutorial)
are DistributedLinearAlgebraObjects. We finish this section by reviewing the key linear algebra
operators:

• SuperLUSolver is a LinearSolver wrapper to both the SuperLU direct solver and the SuperLU
Dist distributed direct solver. By default, whenever possible this class will automatically perform distributed
solves.

• TrilinosAztecOOSolver is an IterativeLinearSolver wrapper to the Trilinos Aztec←↩

OO package implementation of distributed Krylov methods including CG, GMRES and BiCGStab.

• TrilinosMLPreconditioner is a wrapper to the distributed Trilinos ML AMG preconditioners.

• TrilinosIFPACKPreconditioner is a wrapper to the distributed Trilinos IFPACK
preconditioners.

• HyprePreconditioner is a wrapper to the distributed Hypre Scalable Linear Solvers
package, of particular interest is the classical AMG implementation BoomerAMG.

• MatrixVectorProduct is a wrapper to the Trilinos Epetra distributed matrix-vector product im-
plementation.

1.6 Distributed Linear Algebra In Practice

Having discussed oomph-lib's linear algebra infrastructure, we finally remark that oomph-lib is imple-
mented such that linear algebra in oomph-lib is automatically distributed if executed under MPI on multiple
processes. Specifically, a user should not need to specify either a LinearAlgebraDistribution or a
OomphCommunicator, unless they wish to customise some aspect of the parallelisation.

All functionality is designed such that if a user does not specify a LinearAlgebraDistribution, then as
much data and computation as possible will be uniformly distributed over all available processes.

As an example, we consider the Problem method get_jacobian(...). If the user does not specify a return
distribution for the Jacobian and residuals, then oomph-lib will uniformly distribute both containers.

Generated by Doxygen

../../../linear_solvers/html/index.html
http://crd.lbl.gov/~xiaoye/SuperLU/#superlu
http://crd.lbl.gov/~xiaoye/SuperLU/#superlu_dist
http://crd.lbl.gov/~xiaoye/SuperLU/#superlu_dist
http://trilinos.sandia.gov/packages/aztecoo
http://trilinos.sandia.gov/packages/aztecoo
http://trilinos.sandia.gov/packages/ml
http://trilinos.sandia.gov/packages/ifpack
http://trilinos.sandia.gov/packages/ifpack
https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html
http://trilinos.sandia.gov/packages/epetra/

1.7 Source files for this tutorial 7

// Set up a problem:
// Solve a 1D Poisson problem using a source function that generates
// a fish shaped exact solution
unsigned n_element=40;
OneDPoissonProblem<QPoissonElement<1,4> >
problem(n_element,FishSolnOneDPoisson::source_function);

// Get the residual and Jacobian, by default both are uniformly distributed
// over all available processes
my_vector.clear();
my_matrix.clear();

// Get the Jacobian
problem.get_jacobian(my_vector,my_matrix);

oomph_info
<< "Uniformly distributed residual vector: first_row and nrow_local: "
<< my_vector.first_row() << " "
<< my_vector.nrow_local() << std::endl
<< "Uniformly distributed jacobian matrix: first_row, nrow_local and nnz: "
<< my_matrix.first_row() << " "
<< my_matrix.nrow_local() << " "
<< my_matrix.nnz() << " "
<< std::endl;

On the other hand, a user can specify a return distribution by setting the distribution of the matrix and vector prior
to calling get_jacobian(...).

// Request locally replicated residual and Jacobian from the problem
distributed=false;
LinearAlgebraDistribution locally_replicated_distribution_for_jac(
comm_pt,problem.ndof(),distributed);

// Show us how many rows this processor holds
oomph_info
<< "locally replicated distribution_for_jac: first_row and nrow_local: "
<< locally_replicated_distribution_for_jac.first_row() << " "
<< locally_replicated_distribution_for_jac.nrow_local()
<< std::endl;

We finally remark that because all linear algebra operations are automatically distributed, to parallelise
oomph-lib's Newton solve phase, the user need only run their executable under MPI on multiple processes.

1.7 Source files for this tutorial

• The source files for this tutorial are located in the directory:

self_test/mpi/generic_mpi

• The driver code is:

self_test/mpi/generic_mpi/generic_mpi_test.cc

1.8 PDF file

A pdf version of this document is available.

Generated by Doxygen

../../../../self_test/mpi/generic_mpi/generic_mpi_test.cc

	1 Distributed Linear Algebra Infrastructure
	1.1 OomphCommunicator
	1.2 LinearAlgebraDistribution
	1.3 DoubleVector
	1.4 CRDoubleMatrix
	1.5 DistributedLinearAlgebraObject
	1.6 Distributed Linear Algebra In Practice
	1.7 Source files for this tutorial
	1.8 PDF file

