Chapter 1

Demo problem: Turek & Hron's FSI benchmark
problem

In this example we consider the flow in a 2D channel past a cylinder with an attached elastic "flag". This is the FSI
benchmark problem proposed by Turek & Hron,

"Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and a Laminar
Incompressible Flow", S. Turek & J. Hron, pp. 371-385. In: "Fluid-Structure Interaction" Springer Lecture Notes in
Computational Science and Engineering 53. Ed. H.-J. Bungartz & M. Schaefer. Springer Verlag 2006.

The problem combines the two single-physics problems of

* Flow past a cylinder with a "flag" whose motion is prescribed.

e The deformation of a finite-thickness cantilever beam (modelled as a 2D
solid), loaded by surface tractions.

This is our first example problem that involves the coupling between a fluid and "proper" solid (rather than beam
structure) and also includes both fluid and wall inertia.

The problem presented here was used as one of the test cases for oomph-1ib's FSI preconditioner; see

Heil, M., Hazel, A.L. & Boyle, J. (2008): Solvers for large-displacement
fluid-structure interaction problems: Segregated vs. monolithic
approaches. Computational Mechanics.

In this tutorial we concentrate on the problem formulation. The application of the preconditioner is discussed
elsewhere —the required source code is contained in the driver code.
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2 Demo problem: Turek & Hron's FSI benchmark problem

1.1  The Problem

The figure below shows a sketch of the problem: A 2D channel of height H* and length L* conveys fluid of density
pr and dynamic viscosity 1 and contains a cylinder of diameter d*, centred at (X, Y,*) to which a linearly elastic
"flag” of thickness H%,, and length L%, is attached. Steady Poiseuille flow with average velocity U™ is imposed
at the left end of the channel while we assume the outflow to be parallel and axially traction-free. We model the flag
as a linearly elastic Hookean solid with elastic modulus E*, density ps and Poisson's ratio v.

Figure 1.1 Sketch of the problem in dimensional variables.

We non-dimensionalise all length and coordinates on the diameter of the cylinder, d*, the velocities on the mean
velocity, U™, and the fluid pressure on the viscous scale. To facilitate comparisons with Turek & Hron's dimensional
benchmark data (particularly for the period of the self-excited oscillations), we use a timescale of T* = 1 sec to
non-dimensionalise time. The fluid flow is then governed by the non-dimensional Navier-Stokes equations
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where Re = pU*H{/pand St = d*/(U*T*), and
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subject to parabolic inflow

u = 6562(1 — 562)61

at the inflow cross-section; parallel, axially-traction-free outflow at the outlet; and no-slip on the stationary channel
walls and the surface of the cylinder, u = 0. The no-slip condition on the moving flag is
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1.2 Parameter values for the benchmark problems 3

where §[1op,tip,bottom] @re Lagrangian coordinates parametrising the three faces of the flag.

We describe the deformation of the elastic flag by the non-dimensional position vector R(£1, €2, ¢) which is deter-
mined by the principle of virtual displacements
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where all solid stresses and tractions have been non-dimensionalised on Young's modulus, E*; see the Solid
Mechanics Tutorial for details. The solid mechanics timescale ratio (the ratio of the timescale T chosen
to non-dimensionalise time, to the intrinsic timescale of the solid) can be expressed in terms of the Reynolds and
Strouhal numbers, the density ratio, and the FSI interaction parameter as

2
A= (L P\ g (L) e
T* E* Pf

Here is a sketch of the non-dimensional version of the problem:
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Figure 1.2 Sketch of the fluid problem in dimensionless variables, showing the Lagrangian coordinates
that parametrise the three faces of the flag.

1.2 Parameter values for the benchmark problems

The (dimensional) parameter values given in Turek & Hron's benchmark correspond to the following non-dimensional
parameters:

1.2.1 Geometry

« Cylinder diameter d = 1

» Centre of cylinder X, =Y. =2

+ Channel length L = 25

« Channel width H = 4.1

+ Thickness of the undeformed flag Hy;qy = 0.2

* Right end of undeformed flag x;, = 6

1.2.2 Non-dimensional parameters

The three FSI test cases correspond to the following non-dimensional parameters:
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4 Demo problem: Turek & Hron's FSI benchmark problem

Re=U*d*pg/p | St=d*/(U*T*) | Q= pU*/(E*d*) | ps/ps | A*=(d*/T*\/ps/E*)* =
StQ(ps/pf)Re Q
Fe 20 0.5 1.429 x 10~ 1 7.145 x 1076
S
Fo 100 0.1 7.143 x 10~ 10 7.143 x 10~6
SI2
Fe 200 0.05 3.571 x 1076 1 1.786 x 10~
SI3
1.3 Results

The test cases FSI2 and FSI3 are the most interesting because the system develops large-amplitude self-excited
oscillations

1.3.1 FSI2

Following an initial transient period the system settles into large-amplitude self-excited oscillations during which the
oscillating flag generates a regular vortex pattern that is advected along the channel. This is illustrated in the figure
below which shows a snapshot of the flow field (pressure contours and instantaneous streamlines) at ¢ = 6.04.

e 10 15 20 25

Figure 1.3 Snapshot of the flow field (instantaneous streamlines and pressure contours)

The constantly adapted mesh contains and average of 65,000 degrees of freedom. A relatively large timestep of
At = 0.01 — corresponding to about 50 timesteps per period of the oscillation — was used in this computation.
With this discretisation the system settles into oscillations with a period of ~ 0.52 and an amplitude of the tip-
displacement of 0.01 + 0.83.
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Figure 1.4 Time trace of the tip displacement.
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1.4 Overview of the driver code 5

132 FSB3

The figures below shows the corresponding results for the case FSI3 in which the fluid and solid densities are equal
and the Reynolds number twice as large as in the FSI2 case. The system performs oscillations of much higher
frequency and smaller amplitude. This is illustrated in the figure below which shows a snapshot of the flow field
(pressure contours and instantaneous streamlines) at t = 3.615.

Figure 1.5 Snapshot of the flow field (instantaneous streamlines and pressure contours)

This computation was performed with a timestep of At = 0.005 and resulted in oscillations with a period of ~ 0.19
and an amplitude of the tip-displacement of 0.01 + 0.36.

The increase in frequency and Reynolds number leads to the development of thinner boundary and shear layers
which require a finer spatial resolution, involving an average of 84,000 degrees of freedom.

time
Figure 1.6 Time trace of the tip displacement.

1.4 Overview of the driver code

Since the driver code is somewhat lengthy we start by providing a brief overview of the main steps in the Problem
construction:

1. We start by discretising the flag with 2D solid elements, as in the corresponding single-physics
solid mechanics example.

2. Next we attach FSISolidTractionElements to the three solid mesh boundaries that are exposed to
the fluid traction. These elements are used to compute and impose the fluid traction onto the solid elements,
using the flow field from the adjacent fluid elements.

3. We now combine the three sets of FSISolidTractionElements into three individual (sub-)meshes
and convert these to GeomOb ject s, using the MeshAsGeomOb ject class.

Generated by Doxygen


../../../solid/airy_cantilever/html/index.html
../../../solid/airy_cantilever/html/index.html

6 Demo problem: Turek & Hron's FSI benchmark problem

4. The GeomOb ject representation of the three surface meshes is then passed to the constructor of the fluid
mesh. The algebraic node-update methodology provided inthe AlgebraicMesh base class
is used to update its nodal positions in response to the motion of its bounding GeomOb jects.

5. Finally, we use the helper function FSI_functions: :setup_fluid_load_info_for_solid_«
elements(...) to set up the fluid-structure interaction — this function determines which fluid elements are
adjacent to the Gauss points in the FSISolidTractionElements that apply the fluid traction to the
solid.

6. Done!

1.5 Parameter values for the benchmark problems

As usual, We use a namespace to define the (many) global parameters, using default assignments for the FSI1 test
case.

//=====start_of_global_parameters
/// Global variables
//

namespace Global_ Parameters

{

/// Default case ID
string Case_ID="FSI1";

/// Reynolds number (default assignment for FSI1 test case)
double Re=20.0;

/// Strouhal number (default assignment for FSI1 test case)
double St=0.5;

/// \short Product of Reynolds and Strouhal numbers (default
/// assignment for FSI1 test case)
double ReSt=10.0;

/// FSI parameter (default assignment for FSI1 test case)
double Q=1.429%9e-6;

/// \short Density ratio (solid to fluid; default assignment for FSI1
/// test case)
double Density_ratio=1.0;

/// Height of flag
double H=0.2;

/// x position of centre of cylinder
double Centre_x=2.0;

/// vy position of centre of cylinder
double Centre_y=2.0;

/// Radius of cylinder
double Radius=0.5;

/// Pointer to constitutive law
ConstitutiveLaws Constitutive_law_pt=0;

/// \short Timescale ratio for solid (dependent parameter
/// assigned in set_parameters())
double Lambda_sg=0.0;

/// Timestep
double Dt=0.1;

/// Ignore fluid (default assignment for FSI1 test case)
bool Ignore_fluid_loading=false;
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1.5 Parameter values for the benchmark problems 7

/// Elastic modulus
double E=1.0;

/// Poisson’s ratio
double Nu=0.4;

We also include a gravitational body force for the solid. (This is only used for the solid mechanics test cases, CSM1
and CSM2, which will not be discussed here.)

/// Non-dim gravity (default assignment for FSI1 test case)
double Gravity=0.0;

/// Non-dimensional gravity as body force

void gravity (const double& time,
const Vector<double> &xi,
Vector<double> &b)

{

b[0]=0.0;

b[l]=-Gravity;

}

The domain geometry and flow field are fairly complex and it is difficult to construct a good initial guess for the
Newton iteration. To ensure its convergence at the beginning of the simulation we therefore employ the method
suggested by Turek & Hron: We start the flow from rest and ramp up the inflow profile from zero to its maximum
value. The parameters for the time-dependent increase in the influx are defined here:

/// Period for ramping up in flux
double Ramp_period=2.0;

/// Min. flux
double Min_flux=0.0;

/// Max. flux
double Max_flux=1.0;

/17 \Short Flux increases between Min_flux and Max_flux over
/// period Ramp_period
double flux(const double& t)
{
if (t<Ramp_period)
{
return Min_flux+ (Max_flux-Min_flux)
0.5+ (1.0-cos (MathematicalConstants: :Pixt/Ramp_period));
}

{

re rn Max_flux;
}

} // end of specification of ramped influx

Finally, we provide a helper function that assigns the parameters for the various test cases, depending on their ID
("FSI1", "FSI2", "FSI3", "CSM1" or "CSM2"). Here is the assignment for the case FSI1:

/// Set parameters for the various test cases
void set_parameters (const string& case_id)

{

// Remember which case we’re dealing with
Case_ID=case_id;

// Setup independent parameters depending on test case
(case_id=="FSI1")
{
// Reynolds number based on diameter of cylinder
Re=20.0;

// Strouhal number based on timescale of one second
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8 Demo problem: Turek & Hron's FSI benchmark problem

St=0.5;

// Womersley number
ReSt=RexSt;

// FSI parameter
Q0=1.429e-6;

// Timestep —-- aiming for about 40 steps per period
Dt=0.1;

// Density ratio
Density_ratio=1.0;

// Gravity
Gravity=0.0;

// Max. flux
Max_flux=1.0;

// Ignore fluid
Ignore_fluid_loading=false;

// Compute dependent parameters

// Timescale ratio for solid
Lambda_sg=Re*Q*Density_ratioxSt*St;

In the interest of brevity we omit the listings of the assignments for the other cases. Finally, we select the length
of the time interval over which the influx is ramped up from zero to its maximum value to be equal to 20 timesteps,
create a constitutive equation for the solid, and document the parameter values used in the simulation:

// Ramp period (20 timesteps)
Ramp_period=Dt*20.0;

// "Big G" Linear constitutive equations:
Constitutive_law_pt = new GeneralisedHookean (&Nu, &E) ;

// Doc
oomph_info << std::endl;
oomph_info << "—————-mmmm oo "

<< std::endl;
oomph_info << "Case: " << case_id << std::endl;
oomph_info << "Re = " << Re << std::endl;
oomph_info << "St = " << St << std::endl;
oomph_info << "ReSt = " << ReSt << std::endl;
oomph_info << "Q = " << Q << std::endl;
oomph_info << "Dt = " << Dt << std::endl;
oomph_info << "Ramp_period = " << Ramp_period << std::endl;
oomph_info << "Max_flux = " << Max_flux << std::endl;
oomph_info << "Density_ratio = " << Density_ratio << std::endl;
oomph_info << "Lambda_sqg = " << Lambda_sqg << std::endl;
oomph_info << "Gravity = " << Gravity << std::endl;
oomph_info << "Ignore fluid = " << Ignore_fluid_ loading<< std:
oomph_info << "——---mm "

<< std::endl << std::endl;

}

}// end_of_namespace

1.6 The driver code

rendl;

The driver code has the usual structure, though in this case we use the command line arguments to indicate which
case (FSI1, FSI2, FSI3, CSM1 or CSM2) to run. The absence of a command line argument is interpreted as the
code being run as part of comph-1ib"'s self-test procedure in which case we perform a computation with the

parameter values for case FSI1 and perform only a few timesteps.

//=======start_of_main
/// Driver
//
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1.6 The driver code 9

int main(int argc, charx argv([])

{

// Store command line arguments
CommandLineArgs: :setup (argc, argv) ;

// Get case id as string
string case_id="FSI1";
if (CommandLineArgs::Argc==1)
{
oomph_info << "No command line arguments; running self-test FSI1"
<< std::endl;

}
€ if (CommandLineArgs::Argc==2)
{

case_id=CommandLineArgs: :Argv[1l];
}

{
oomph_info << "Wrong number of command line arguments" << std::endl;
oomph_info << "Enter none (for default) or one (namely the case id"
<< std::endl;
oomph_info << "which should be one of: FSI1, FSI2, FSI3, CSM1"
<< std::endl;
}

std::cout << "Running case " << case_id << std::endl;

We set up the global parameter values, create a DocInfo object and trace file to record the output, and build the
problem.

// Setup parameters for case identified by command line
// argument
Global_Parameters::set_parameters (case_id);

// Prepare output

DocInfo doc_info;

ofstream trace_file;
doc_info.set_directory ("RESLT") ;
trace_file.open ("RESLT/trace.dat");

// Length and height of domain
double length=25.0;
double height=4.1;

//Set up the problem

TurekProblem<AlgebraicElement<RefineableQTaylorHoodElement<2>
>I

RefineableQPVDElement<2,3> > problem(length, height);

Next, we choose the number of timesteps (using a smaller number for a validation run, and for the case FSI1 in
which the system rapidly approaches a steady state) and initialise the time-stepping for an impulsive start from the
zero flow solution.

// Default number of timesteps
unsigned nstep=4000;
if (Global_Parameters::Case_ID=="FSI1"
{
std::cout << "Reducing number of steps for FSI1 " << std::endl;
nstep=400;
}

1 £ (CommandLineArgs::Argc==1)

{

std::cout << "Reducing number of steps for validation " << std::endl;

nstep=2;

}

//Timestep:
double dt=Global_Parameters: :Dt;

// Initialise timestep
problem.initialise_dt (dt);

// Impulsive start
problem.assign_initial_values_impulsive (dt);
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10 Demo problem: Turek & Hron's FSI benchmark problem

Finally, we document the initial condition and start the time-stepping procedure, setting the first flagto false
because we have not specified an analytical expression for the initial conditions that could be re-assigned after the

mesh adaptation when computing the first timestep.

// Doc the initial condition
problem.doc_solution (doc_info, trace_file);
doc_info.number () ++;

// Don’t re-set the initial conditions when adapting during first
// timestep
bool first = false;

// Max number of adaptation for time-stepping
unsigned max_adapt=1;
for (unsigned i=0;i<nstep;i++)

{

// Solve the problem
problem.unsteady_newton_solve (dt,max_adapt, first);

// Output the solution
problem.doc_solution (doc_info,trace_file);

// Step number
doc_info.number () ++;
}

trace_file.close();

}//end of main

1.7 The Problem class

The Problem class contains the usual member functions, such as access functions to the various meshes. Be-
cause the nodal positions are updated by an algebraic node-update procedure, the function actions_before«
_newton_convergence_check () is employed to update the nodal positions in response to changes in the
(solid) variables during the Newton iteration. The function actions_before_implicit_timestep() is

used to adjust the influx during the start-up period.

//====start_of_problem_class
/// Problem class
//

template< class FLUID_ELEMENT,class SOLID_ELEMENT >
class TurekProblem : public Problem

{
public:

/// \short Constructor: Pass length and height of domain
TurekProblem(const double &length, const double &height);

/// Access function for the fluid mesh
RefineableAlgebraicCylinderWithFlagMesh<FLUID_ELEMENT>% fluid_mesh_pt ()
{ return Fluid_mesh_pt;}

/// Access function for the solid mesh
ElasticRefineableRectangularQuadMesh<SOLID_ELEMENT>*& solid_mesh_pt ()
{return Solid_mesh_pt;}

/// Access function for the i-th mesh of FSI traction elements
SolidMesh*& traction_mesh_pt (const unsignedé& 1i)

{return Traction_mesh_pt[i];}

/// Actions after adapt: Re-setup the fsi lookup scheme
void actions_after_adapt ();

/// Doc the solution
void doc_solution (DocInfo& doc_info, ofstream& trace_file);

/// Update function (empty)
void actions_after_newton_solve () {}

/// Update function (empty)
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1.8 The problem constructor 11

void actions_before_newton_solve () {}

/// \short Update the (enslaved) fluid node positions following the
/// update of the solid variables before performing Newton convergence
/// check

void actions_before_newton_convergence_check () ;

/// Update the time-dependent influx
void actions_before_implicit_timestep();

private:

/// Create FSI traction elements
void create_fsi_traction_elements();

/// Pointer to solid mesh
ElasticRefineableRectangularQuadMesh<SOLID_ELEMENT>* Solid_mesh_pt;

///Pointer to fluid mesh
RefineableAlgebraicCylinderWithFlagMesh<FLUID_ELEMENT>* Fluid_mesh_pt;

/// Vector of pointers to mesh of FSI traction elements
Vector<SolidMeshx> Traction_mesh_pt;

/// Combined mesh of traction elements -- only used for documentation
SolidMesh* Combined_traction_mesh_pt;

/// Overall height of domain
double Domain_height;

/// Overall length of domain
double Domain_length;

/// Pointer to solid control node
Nodex Solid_control_node_pt;

/// Pointer to fluid control node
Node* Fluid_control_node_pt;

};// end_of_problem_class

1.8 The problem constructor

We start by building the solid mesh, using an initial discretisation with 20 x 2 elements in the x- and y-directions.
(The length of the flag is determined such that it emanates from its intersection with the cylinder and ends at x=6;
The origin vector shifts the "lower left" vertex of the solid mesh so that its centreline is aligned with the cylinder.)

//=====start_of_constructor
/// Constructor: Pass length and height of domain
//

template< class FLUID_ELEMENT,class SOLID_ELEMENT >
TurekProblem<FLUID_ELEMENT, SOLID_ELEMENT>::
TurekProblem(const double &length,
const double gheight) : Domain_height (height),
Domain_length (length)

// Increase max. number of iterations in Newton solver to
// accomodate possible poor initial guesses
Max_newton_iterations=20;

Max_residuals=1.0e4;

// Build solid mesh
// # of elements in x-direction
unsigned n_x=20;

// # of elements in y-direction
unsigned n_y=2;

// Domain length in y-direction
double 1_y=Global_Parameters::H;

// Create the flag timestepper (consistent with BDF<2> for fluid)
Newmark<2>* flag_time_stepper_pt=new Newmark<2>;
add_time_stepper_pt (flag_time_stepper_pt);
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12 Demo problem: Turek & Hron's FSI benchmark problem

/// Left point on centreline of flag so that the top and bottom
/// vertices merge with the cylinder.
Vector<double> origin(2);
origin[0]=Global_Parameters::Centre_x+

Global_Parameters::Radiusx*

sqrt (1.0-Global_Parameters::H+xGlobal_Parameters::H/

(4.0+Global_Parameters::Radius*Global_Parameters::Radius));

origin[l]=Global_Parameters::Centre_y-0.5x1_y;

// Set length of flag so that endpoint actually stretches all the
// way to x=6:
double 1_x=6.0-origin[0];

//Now create the mesh
solid_mesh_pt () = new ElasticRefineableRectangularQuadMesh<SOLID_ELEMENT> (
n_x,n_vy,l x,1 y,origin, flag_time_stepper_pt);

We create an error estimator for the solid mesh and identify a control node at the tip of the flag to track its motion.

// Set error estimator for the solid mesh
Z2ErrorEstimator+ solid_error_estimator_pt=new Z2ErrorEstimator;
solid_mesh_pt () ->spatial_error_estimator_pt ()=solid_error_estimator_pt;

// Element that contains the control point
FiniteElement* el_pt=solid_mesh_pt ()->finite_element_pt (n_x*n_y/2-1);

// How many nodes does it have?
unsigned nnod=el_pt->nnode () ;

// Get the control node
Solid_control_node_pt=el_pt->node_pt (nnod-1);

std::cout << "Coordinates of solid control point "
<< Solid_control_node_pt->x(0) << " "
<< Solid_control_node_pt->x (1) << " " << std::endl;

Finally, we perform one uniform mesh refinement and disable any further mesh adaptation.

// Refine the mesh uniformly
solid_mesh_pt () —>refine_uniformly () ;

//Do not allow the solid mesh to be refined again
solid_mesh_pt () ->disable_adaptation();

Next, we attach FSISolidTractionElements to the boundaries of the solid mesh that are exposed to the
fluid. We complete their build by specifying which boundary of the bulk mesh they are attached to, as this information
is required when setting up the fluid-structure interaction; see Further comments and exercises.

// Build mesh of solid traction elements that apply the fluid

// Create storage for Meshes of FSI traction elements at the bottom
// top and left boundaries of the flag
Traction_mesh_pt.resize (3);

// Now construct the traction element meshes
Traction_mesh_pt[0]=new SolidMesh;
Traction_mesh_pt[l]=new SolidMesh;
Traction_mesh_pt[2]=new SolidMesh;

// Build the FSI traction elements
create_fsi_traction_elements();

// Loop over traction elements, pass the FSI parameter and tell them
// the boundary number in the bulk solid mesh -- this is required so
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1.8 The problem constructor 13

// they can get access to the boundary coordinates!
for (unsigned bound=0;bound<3;bound++)

{

unsigned n_face_element = Traction_mesh_pt [bound]->nelement () ;

r (unsigned e=0;e<n_face_element;e++)
{
//Cast the element pointer and specify boundary number
FSISolidTractionElement<SOLID_ELEMENT, 2>* elem_pt=
dynamic_cast<FSISolidTractionElement<SOLID_ELEMENT, 2>%>
(Traction_mesh_pt [bound]->element_pt (e));

// Specify boundary number
elem_pt->set_boundary_number_in_bulk_mesh (bound) ;

// Function that specifies the load ratios
elem_pt->g pt () = &Global Parameters::Q;

}
} // build of FSISolidTractionElements is complete

Finally, we create GeomObject representations of the three surface meshes of FSISolidTraction+«+
Elements. We will use these to represent the curvilinear, moving boundaries of the fluid mesh.

// Turn the three meshes of FSI traction elements into compound
// geometric objects (one Lagrangian, two Eulerian coordinates)
// that determine the boundary of the fluid mesh
MeshAsGeomObject

bottom_flag_pt=

new MeshAsGeomObject

(Traction_mesh_pt[0]);

MeshAsGeomObject* tip_flag_pt=
new MeshAsGeomObject
(Traction_mesh_pt[1]);

MeshAsGeomObject* top_flag_pt=
new MeshAsGeomObject
(Traction_mesh_pt[2]);

The final mesh to be built is the fluid mesh whose constructor requires pointers to the four GeomOb jects that
represent the cylinder and three fluid-loaded faces of the flag, respectively. We represent the cylinderbyaCircle
object:

// Build fluid mesh

//Create a new Circle object as the central cylinder

Circlex cylinder_pt = new Circle(Global_Parameters::Centre_x,
Global_Parameters::Centre_y,
Global_Parameters::Radius);

We build the mesh and identify a control node (a node at the upstream face of the cylinder), before creating an error
estimator and performing one uniform mesh refinement.

// Allocate the fluid timestepper
BDF<2>+ fluid_time_stepper_pt=new BDF<2>;
add_time_stepper_pt (fluid_time_stepper_pt);

// Build fluid mesh
Fluid_mesh_pt=
new RefineableAlgebraicCylinderWithFlagMesh<FLUID_ELEMENT>
(cylinder_pt,
top_flag_pt,
bottom_flag_pt,
tip_flag_pt,
length, height,
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14 Demo problem: Turek & Hron's FSI benchmark problem

1 _x,Global_Parameters::H,
Global_Parameters::Centre_x,
Global_Parameters::Centre_y,
Global_Parameters::Radius,
fluid_time_stepper_pt);

// I happen to have found out by inspection that
// node 5 in the hand-coded fluid mesh is at the
// upstream tip of the cylinder

Fluid_control_node_pt=Fluid_mesh_pt->node_pt (5);

// Set error estimator for the fluid mesh
Z2ErrorEstimatorx fluid_error_estimator_pt=new Z2ErrorEstimator;
fluid_mesh_pt () —>spatial_error_estimator_pt ()=fluid_error_estimator_pt;

// Refine uniformly
Fluid_mesh_pt->refine_uniformly () ;

We now add the various meshes to the Problem' s collection of sub-meshes and combine them to a global mesh

// Build combined global mesh

// Add Solid mesh the problem’s collection of submeshes
add_sub_mesh (solid_mesh_pt());

// Add traction sub-meshes
for (unsigned 1=0;1i<3;i++)
{
add_sub_mesh (traction_mesh_pt (i));

}

// Add fluid mesh
add_sub_mesh (fluid_mesh_pt());

// Build combined "global" mesh
build_global_mesh();

The application of boundary conditions for the solid are straightforward: All displacements of the flag's left end (mesh
boundary 3) are suppressed; the other faces are free. Strictly speaking, the pinning of the redundant solid pressure
nodes is superfluous since the RefineableQPVDElement used for the discretisation of the flag employ a
displacement-based formulation, but it is good practise to perform this step anyway to "future-proof" the code for the
use of other element types.

// Apply solid boundary conditons

//Solid mesh: Pin the left boundary (boundary 3) in both directions
unsigned n_side = mesh_pt () ->nboundary_node (3) ;

//Loop over the nodes
(unsigned i=0;i<n_side;i++)
{
solid_mesh_pt () ->boundary_node_pt (3,1)->pin_position(0);
solid_mesh_pt () ->boundary_node_pt (3,1)->pin_position(1l);
}

// Pin the redundant solid pressures (if any)
PVDEquationsBase<2>::pin_redundant_nodal_solid_pressures (
solid_mesh_pt () ->element_pt ());

The fluid has Dirichlet boundary conditions (prescribed velocity) everywhere apart from the outflow where only the
horizontal velocity is unknown.
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// Apply fluid boundary conditions

//Fluid mesh: Horizontal, traction-free outflow; pinned elsewhere
unsigned num_bound = fluid_mesh_pt () ->nboundary () ;
for (unsigned ibound=0; ibound<num_bound; ibound++)
{
unsigned num_nod= fluid_mesh_pt () ->nboundary_node (ibound) ;
(unsigned inod=0; inod<num_nod; inod++)
{
// Parallel, axially traction free outflow at downstream end
(ibound != 1)
{
fluid_mesh_pt () ->boundary_node_pt (ibound, inod) ->pin (0) ;
fluid_mesh_pt () -—>boundary_node_pt (ibound, inod) ->pin (1) ;
}
else
{
fluid_mesh_pt () ->boundary_node_pt (ibound, inod) ->pin (1) ;
}
}
}//end_of_pin

// Pin redundant pressure dofs in fluid mesh
RefineableNavierStokesEquations<2>::
pin_redundant_nodal_pressures (fluid_mesh_pt () ->element_pt ());

We impose a parabolic inflow profile with the current value of the influx at the inlet (fluid mesh boundary 3).

// Apply boundary conditions for fluid

// Impose parabolic flow along boundary 3

// Current flow rate

double t=0.0;

double ampl=Global_Parameters::flux(t);

unsigned ibound=3;

unsigned num_nod= Fluid_mesh_pt->nboundary_node (ibound) ;

(unsigned inod=0; inod<num_nod; inod++)

{
double ycoord = Fluid_mesh_pt->boundary_node_pt (ibound, inod)->x (1) ;
double uy = ampl=*6.0xycoord/Domain_heightx (1.0-ycoord/Domain_height);
Fluid_mesh_pt->boundary_node_pt (ibound, inod) ->set_value (0, uy) ;
Fluid_mesh_pt->boundary_node_pt (ibound, inod) ->set_value (1,0.0);
}

We complete the build of the solid elements by passing them the pointer to the constitutive equation, the gravity

vector and the timescale ratio:

// Complete build of solid elements

//Pass problem parameters to solid elements
unsigned n_element =solid_mesh_pt () ->nelement () ;
for (unsigned i=0;i<n_element;i++)
{
//Cast to a solid element
SOLID_ELEMENT xel_pt = dynamic_cast<SOLID_ELEMENTx*> (
solid_mesh_pt () ->element_pt (i));

// Set the constitutive law
el _pt->constitutive_law_pt () =
Global_Parameters::Constitutive_law_pt;

//Set the body force
el_pt->body_force_fct_pt () = Global Parameters::gravity;

// Timescale ratio for solid
el_pt->lambda_sqg_pt () = &Global_Parameters::Lambda_sq;
}
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The fluid elements require pointers to the Reynolds and Womersley (product of Reynolds and Strouhal) numbers:

// Complete build of fluid elements

// Set physical parameters in the fluid mesh
unsigned nelem=fluid_mesh_pt () ->nelement () ;
for (unsigned e=0;e<nelem;et+)
{
// Upcast from GeneralisedElement to the present element
FLUID_ELEMENTx el _pt = dynamic_cast<FLUID_ELEMENTx*>
(fluid_mesh_pt () ->element_pt (e));

//Set the Reynolds number
el _pt->re_pt() = &Global_Parameters::Re;

//Set the Womersley number
el_pt->re_st_pt () = &Global Parameters::ReSt;

}//end_of_loop

Setting up the fluid-structure interaction is done from "both" sides" of the fluid-solid interface: First we ensure that
the no-slip condition is automatically applied to all fluid nodes that are located on the three faces of the flag (mesh
boundaries 5, 6 and 7). This is done by passing the function pointer to the FSI_functions: :apply_<«
no_slip_on_moving_wall () function to the relevant fluid nodes (recall that the auxiliary node update
functions are automatically executed whenever the position of a node is updated by the algebraic node update).
Since the no-slip condition (1) involves the Strouhal number (which, in the current problem, is not equal to the
default value of FSTI_functions: :Strouhal_for_no_slip=1.0), we overwrite the default assignment
with the actual Strouhal number in the problem.

// Setup FSI

// Pass Strouhal number to the helper function that automatically applies
// the no-slip condition
FSI_functions::Strouhal_for_no_slip=Global_Parameters::St;

// The velocity of the fluid nodes on the wall (fluid mesh boundary 5,6,7)
// 1s set by the wall motion -- hence the no-slip condition must be
// re-applied whenever a node update is performed for these nodes.
// Such tasks may be performed automatically by the auxiliary node update
// function specified by a function pointer:
if (!Global_Parameters::Ignore_fluid_loading)
{
r (unsigned ibound=5; ibound<8; ibound++ )
{
unsigned num_nod= Fluid_mesh_pt->nboundary_node (ibound) ;
for (unsigned inod=0; inod<num_nod; inod++)
{
Fluid_mesh_pt->boundary_node_pt (ibound, inod)->
set_auxiliary_node_update_fct_pt (
FSI_functions::apply_no_slip_on_moving _wall);
}

} // done automatic application of no-slip

Next, we set up the lookup schemes required by the FSISolidTractionElements to establish which fluid
elements affect the traction onto the solid:

// Work out which fluid dofs affect the residuals of the wall elements:

// We pass the boundary between the fluid and solid meshes and

// pointers to the meshes. The interaction boundary are boundaries 5,6,7

// of the 2D fluid mesh.

FSI_functions::setup_fluid_load_info_for_solid_elements<FLUID_ELEMENT, 2>
(this, 5,Fluid_mesh_pt, Traction_mesh_pt[0]);
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FSI_functions::setup_fluid_load_info_for_solid_elements<FLUID_ELEMENT, 2>
(this, 6,Fluid_mesh_pt, Traction_mesh_pt[2]);

FSI_functions::setup_fluid_load_info_for_solid_elements<FLUID_ELEMENT, 2>
(this, 7,Fluid_mesh_pt, Traction_mesh_pt[1]);

All interactions have now been specified and we conclude by assigning the equation numbers

// Assign equation numbers
cout << assign_eqgn_numbers () << std::endl;

}//end_of_constructor

1.9 Create traction elements

This is a helper function that attaches FSISolidTractionElement to the solid elements that are exposed
to the fluid traction. We store the elements in three distinct sub-meshes — one for each face. (Yet another mesh,
pointed to by Combined_traction_mesh_pt, is created for post-processing purposes.)

//============start_of_create_traction_elements
/// Create FSI traction elements
//

template<class FLUID_ELEMENT,class SOLID_ELEMENT >

void TurekProblem<FLUID_ELEMENT, SOLID_ELEMENT>::create_fsi_traction_elements
()

{

// Container to collect all nodes in the traction meshes
std::set<SolidNodex> all_nodes;

// Traction elements are located on boundaries 0-2:

for (unsigned b=0;b<3;b++)
{
// How many bulk elements are adjacent to boundary b?
unsigned n_element = solid_mesh_pt () ->nboundary_element (b);

// Loop over the bulk elements adjacent to boundary b?
r(unsigned e=0;e<n_element;e++)
{
// Get pointer to the bulk element that is adjacent to boundary b
SOLID_ELEMENT* bulk_elem_pt = dynamic_cast<SOLID_ELEMENTx*> (
solid_mesh_pt () —>boundary_element_pt (b,e));

//What is the index of the face of the element e along boundary b
int face_index = solid_mesh_pt () ->face_index_at_boundary(b,e);

// Create new element and add to mesh
Traction_mesh_pt [b]->add_element_pt (
new FSISolidTractionElement<SOLID_ELEMENT, 2> (bulk_elem_pt, face_index));

} //end of loop over bulk elements adjacent to boundary b

// Identify unique nodes

unsigned nnod=solid_mesh_pt () -—>nboundary_node (b) ;

for (unsigned J=0; j<nnod; j++)
{
all _nodes.insert (solid_mesh_pt () -—>boundary_node_pt (b, j));
}

}

// Build combined mesh of fsi traction elements
Combined_traction_mesh_pt=new SolidMesh (Traction_mesh_pt);

// Stick nodes into combined traction mesh
for (std::set<SolidNodex>::iterator it=all_nodes.begin();
it!=all_nodes.end();it++)
{
Combined_traction_mesh_pt->add_node_pt (xit);

}

} // end of create_traction_elements
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18 Demo problem: Turek & Hron's FSI benchmark problem

1.10 Actions before Newton convergence check

The algebraic node-update procedure updates the positions in response to changes in the solid displacements
but this is not done automatically when the Newton solver updates the solid mechanics degrees of freedom. We
therefore force a node-update before the Newton convergence check.

//====start_of_actions_before_newton_convergence_check
/// Update the (enslaved) fluid node positions following the
/// update of the solid variables

//
template <class FLUID_ELEMENT,class SOLID_ELEMENT>
void TurekProblem<FLUID_ELEMENT, SOLID_ELEMENT>
::actions_before_newton_convergence_check ()

{

fluid_mesh_pt () ->node_update () ;

}

1.11  Actions before the timestep

Before each timestep we update the inflow profile for all fluid nodes on mesh boundary 3.

//===== start_of_actions_before_implicit_timestep
/// Actions before implicit timestep: Update inflow profile
//

template <class FLUID_ELEMENT,class SOLID_ELEMENT>
void TurekProblem<FLUID_ELEMENT, SOLID_ELEMENT>: :
actions_before_implicit_timestep ()

{

// Current time

double t=time_pt ()->time () ;

// BAmplitude of flow
double ampl=Global_Parameters::flux(t);

// Update parabolic flow along boundary 3

unsigned ibound=3;

unsigned num_nod= Fluid_mesh_pt->nboundary_node (ibound) ;

for (unsigned inod=0; inod<num_nod; inod++)
{
double ycoord = Fluid_mesh_pt->boundary_node_pt (ibound, inod)->x(1);
double uy = ampl«*6.0xycoord/Domain_height« (1.0-ycoord/Domain_height);
Fluid_mesh_pt->boundary_node_pt (ibound, inod) ->set_value (0, uy) ;
Fluid_mesh_pt->boundary_node_pt (ibound, inod) ->set_value (1,0.0);
}

} //end_of_actions_before_implicit_timestep

1.12 Actions after adapt

After each adaptation, we unpin and re-pin all redundant pressures degrees of freedom. This is necessary because
their "redundant-ness" may have been altered by changes in the refinement pattern; see another tutorial
for details. We ensure the automatic application of the no-slip condition on fluid nodes that are located on the faces
of the flag, and re-setup the FSI lookup scheme that tells FSISolidTractionElements which fluid elements
are located next to their Gauss points.

// start_of_actions_after_adapt
/// Actions after adapt: Re-setup FSI
//

template<class FLUID_ELEMENT,class SOLID_ELEMENT >

void TurekProblem<FLUID_ELEMENT, SOLID_ELEMENT>::actions_after_adapt
()

{

// Unpin all pressure dofs
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RefineableNavierStokesEquations<2>::
unpin_all_pressure_dofs (fluid_mesh_pt () ->element_pt ());

// Pin redundant pressure dofs
RefineableNavierStokesEquations<2>::
pin_redundant_nodal_pressures (fluid_mesh_pt () ->element_pt ());

// Unpin all solid pressure dofs
PVDEquationsBase<2>::
unpin_all_solid_pressure_dofs(solid _mesh_pt () ->element_pt());

// Pin the redundant solid pressures (if any)
PVDEquationsBase<2>::pin_redundant_nodal_solid_pressures (
solid_mesh_pt () ->element_pt ());

// The velocity of the fluid nodes on the wall (fluid mesh boundary 5,6,7)
// is set by the wall motion -- hence the no-slip condition must be
// re-applied whenever a node update is performed for these nodes.
// Such tasks may be performed automatically by the auxiliary node update
// function specified by a function pointer:
if (!Global_Parameters::Ignore_fluid_loading)
{
for (unsigned ibound=5; ibound<8; ibound++ )
{
unsigned num_nod= Fluid_mesh_pt->nboundary_node (ibound) ;
for (unsigned inod=0; inod<num_nod; inod++)
{
Fluid_mesh_pt->boundary_node_pt (ibound, inod)->
set_auxiliary_node_update_fct_pt (
FSI_functions::apply_no_slip_on_moving_wall);

// Re-setup the fluid load information for fsi solid traction elements
FSI_functions::setup_fluid_load_info_for_solid_elements<FLUID_ELEMENT, 2>
(this, 5,Fluid_mesh_pt, Traction_mesh_pt[0]);

FSI_functions::setup_fluid_load_info_for_solid_elements<FLUID_ELEMENT, 2>
(this, 6,Fluid_mesh_pt, Traction_mesh_pt[2]);

FSI_functions::setup_fluid_load_info_for_solid_elements<FLUID_ELEMENT, 2>
(this, 7,Fluid_mesh_pt, Traction_mesh_pt[1]);

}// end of actions_after_adapt

1.13 Post-processing

The function doc_solution(...) produces the output for the fluid, solid and traction meshes and writes selected
data to the trace file.

//=====start_of_doc_solution
/// Doc the solution
//

template<class FLUID_ELEMENT,class SOLID_ELEMENT >

void TurekProblem<FLUID_ELEMENT, SOLID_ELEMENT>::doc_solution
(

DocInfo& doc_info, ofstream& trace_file)

{

// FSI_functions::doc_fsi<AlgebraicNode> (Fluid_mesh_pt,
// Combined_traction_mesh_pt,
// doc_info);

// pause ("done");

ofstream some_file;
char filename[100];

// Number of plot points
unsigned n_plot = 5;

// Output solid solution
sprintf (filename, "%$s/solid_soln%i.dat",doc_info.directory().c_str(),
doc_info.number ());
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some_file.open (filename);
solid_mesh_pt () —>output (some_file,n_plot);
some_file.close();

// Output fluid solution
sprintf (filename, "%s/soln%i.dat",doc_info.directory().c_str(),

doc_info.number());

some_file.open(filename);
fluid_mesh_pt () ->output (some_file,n_plot);
some_file.close();

//Output the traction
sprintf (filename, "$s/traction%i.dat",doc_info.directory().c_str(),

doc_info.number ());

some_file.open (filename);
// Loop over the traction meshes

{

}

(unsigned 1=0;1<3;i++)

/ Loop over the element in traction_mesh_pt

unsigned n_element = Traction_mesh_pt[i]->nelement ();
for (unsigned e=0;e<n_element;e++)

{

FSISolidTractionElement<SOLID_ELEMENT,2>* el_pt =
dynamic_cast<FSISolidTractionElement<SOLID_ELEMENT, 2>% > (
Traction_mesh_pt[i]->element_pt(e) );

el_pt->output (some_file, 5);
}

some_file.close();

//
//

Write trace (we’re only using Taylor Hood elements so we know that
the pressure is the third value at the fluid control node...

trace_file << time_pt ()->time() << " "

<< Solid_control_node_pt->x(0) << " "

<< Solid_control_node_pt->x (1) << " "

<< Fluid_control_node_pt->value(2) << " "

<< Global_Parameters::flux(time_pt ()->time()) << " "
<< std::endl;

cout << "Doced solution for step "

<< doc_info.number ()
<< std::endl << std::endl << std::endl;

}//end_of_doc_solution

1.14 Further comments and exercises

* When completing the build of the FSISolidTractionElements (the elements that apply the fluid trac-
tion to the solid elements that are exposed to the fluid) we specified the number of the solid mesh boundary
they are located on, using

elem_pt->set_boundary_number_in_bulk_mesh (bound) ;

This information is required when setting up the fluid-structure interaction because the MeshAsGeom«
Ob ject representation of the mesh of FSISolidTractionElements is parametrised by the boundary
coordinate in the solid mesh. Explore the details of the implementation by commenting out the relevant line
of code and use the debugger to find out how and where the code fails. Note: Since this step is somewhat
subtle and therefore easily forgotten, the FSISolidTractionElements issue an explicit warning if the
bulk boundary number has not been set — but only if the the library is compiled in PARANOID mode.

» When comparing our results against those in Turek & Hron's benchmark, we only focused on the period and
amplitude of the fully-developed self-excited oscillations. The benchmark data also provides data on the time-
dependent variations of the drag and lift coefficients. Design suitable FaceElements (to be attached to the
faces of the Navier-Stokes elements that are adjacent to the flag or the cylinder) to compute these quantities.
The NavierStokesSurfacePowerElement s should provide a good basis for these.
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1.16 Source files for this tutorial

» The source files for this tutorial are located in the directory:

demo_drivers/interaction/turek_flag/

« The driver code is:

demo_drivers/interaction/turek_flag/turek_flag.cc

1.17 PDF file

A pdf version of this document is available.
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