
Chapter 1

Example problem: Adaptive solution of the 2D
advection diffusion equation with flux boundary
conditions

In this problem we will discuss the 2D advection-diffusion problem with Neumann (flux) boundary conditions, using
oomph-lib's mesh adaptation routines.

Two-dimensional advection-diffusion problem in a rectangular domain

Solve

Pe
2∑

i=1

wi (x1, x2)
∂u

∂xi
=

2∑
i=1

∂2u

∂x2i
+ f(x1, x2), (1)

in the rectangular domain D = {(x1, x2) ∈ [0, 1]× [0, 2]}. We split the domain boundary ∂D into two parts so
that ∂D = ∂DNeumann ∪ ∂DDirichlet, where ∂DNeumann = {(x1, x2)|x1 = 1, x2 ∈ [0, 2]}. On ∂DDirichlet

we apply the Dirichlet boundary conditions

u|∂DDirichlet
= u0, (2)

where the function u0 is given. On ∂DNeumann we apply the Neumann conditions

∂u

∂n

∣∣∣∣
∂DNeumann

=
∂u

∂x1

∣∣∣∣
∂DNeumann

= g0, (3)

where the function g0 is given.

As always, we validate the code by choosing the boundary data and the source functions such that

u(x1, x2) = tanh(1− α(x1 tan Φ− x2)), (4)

is the exact solution of the problem. The plot below shows the numerical solution for Φ = 45◦, a Peclet number of
Pe = 200, and four different values of the "steepness parameter", α = 0.2, 5, 10 and 15.



2Example problem: Adaptive solution of the 2D advection diffusion equation with flux boundary conditions

Figure 1.1 Animation of the adaptive solution for various values of the ‘steepness parameter'.

As in the example with Dirichlet boundary conditions, the unforced case is a lot more interest-
ing. The plot below shows the result for a zero source function f ≡ 0, Dirichlet boundary conditions determined
from the "exact solution" of the forced problem for α = 15, and a prescribed flux of g0 = −1 on ∂DNeumann.

Figure 1.2 Plot of the adaptive solution of the unforced problem.

Along ∂DDirichlet, the value of u is enforced by the Dirichlet boundary condition (2) and, as in the previous
example, the "wind" either sweeps this value into the interior of the domain or creates a sharp boundary layer
within which the solution that is "swept" along from the interior adjusts itself to the prescribed boundary value. Along

Generated by Doxygen

../../two_d_adv_diff_adapt/html/index.html
../../two_d_adv_diff_adapt/html/index.html
../../two_d_adv_diff_adapt/html/index.html


1.1 The driver code 3

∂DNeumann, the flux boundary condition (3) imposes the normal derivative of the solution. This boundary condition
is much "softer" than the Dirichlet condition and does not create boundary layers that are as sharp as the ones that
develop on ∂DDirichlet.

1.1 The driver code

The driver code for this problem is so similar to the corresponding Poisson problem that we do
not list it here. The modifications are the same as those discussed in the advection diffusion problem
with Dirichlet boundary conditions: We have to specify the wind function and the Peclet number.

1.2 Source files for this tutorial

• The source files for this tutorial are located in the directory:

demo_drivers/advection_diffusion/two_d_adv_diff_flux_bc/

• The driver code is:

demo_drivers/advection_diffusion/two_d_adv_diff_flux_bc/two_d_adv_diff←↩

_flux_bc.cc

1.3 PDF file

A pdf version of this document is available.

Generated by Doxygen

../../../../demo_drivers/advection_diffusion/two_d_adv_diff_flux_bc/two_d_adv_diff_flux_bc.cc
../../../poisson/two_d_poisson_flux_bc_adapt/html/index.html
../../two_d_adv_diff_adapt/html/index.html
../../two_d_adv_diff_adapt/html/index.html
../../../../demo_drivers/advection_diffusion/two_d_adv_diff_flux_bc/two_d_adv_diff_flux_bc.cc
../../../../demo_drivers/advection_diffusion/two_d_adv_diff_flux_bc/two_d_adv_diff_flux_bc.cc
../../../../demo_drivers/advection_diffusion/two_d_adv_diff_flux_bc/two_d_adv_diff_flux_bc.cc

	1 Example problem: Adaptive solution of the 2D advection diffusion equation with flux boundary conditions
	1.1 The driver code
	1.2 Source files for this tutorial
	1.3 PDF file


